| 所在主题: | |
| 文件名: Model_reduction_for_calibration_of_American_options.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3693435.html | |
| 附件大小: | |
|
英文标题:
《Model reduction for calibration of American options》 --- 作者: Olena Burkovska, Kathrin Glau, Mirco Mahlstedt, Barbara Wohlmuth --- 最新提交年份: 2016 --- 英文摘要: American put options are among the most frequently traded single stock options, and their calibration is computationally challenging since no closed-form expression is available. Due to the higher flexibility in comparison to European options, the mathematical model involves additional constraints, and a variational inequality is obtained. We use the Heston stochastic volatility model to describe the price of a single stock option. In order to speed up the calibration process, we apply two model reduction strategies. Firstly, a reduced basis method (RBM) is used to define a suitable low-dimensional basis for the numerical approximation of the parameter-dependent partial differential equation ($\\mu$PDE) model. By doing so the computational complexity for solving the $\\mu$PDE is drastically reduced, and applications of standard minimization algorithms for the calibration are significantly faster than working with a high-dimensional finite element basis. Secondly, so-called de-Americanization strategies are applied. Here, the main idea is to reformulate the calibration problem for American options as a problem for European options and to exploit closed-form solutions. Both reduction techniques are systematically compared and tested for both synthetic and market data sets. --- 中文摘要: 美国看跌期权是交易最频繁的单一股票期权之一,由于没有可用的封闭式表达式,因此其校准在计算上具有挑战性。由于与欧式期权相比具有更高的灵活性,该数学模型包含了额外的约束,并得到了一个变分不等式。我们使用赫斯顿随机波动率模型来描述单个股票期权的价格。为了加快校准过程,我们采用了两种模型简化策略。首先,使用约化基方法(RBM)定义一个合适的低维基,用于参数相关偏微分方程(PDE)模型的数值逼近。通过这样做,解决$\\ mu$偏微分方程的计算复杂度大大降低,用于校准的标准最小化算法的应用速度明显快于使用高维有限元基矗其次,采用了所谓的非美国化策略。这里的主要思想是将美式期权的校准问题重新表述为欧式期权的问题,并利用闭式解。针对合成数据集和市场数据集,对这两种还原技术进行了系统的比较和测试。 --- 分类信息: 一级分类:Mathematics 数学 二级分类:Numerical Analysis 数值分析 分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation 分析和代数问题的数值算法,科学计算 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明