| 所在主题: | |
| 文件名: Probability_density_of_lognormal_fractional_SABR_model.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3693653.html | |
| 附件大小: | |
|
英文标题:
《Probability density of lognormal fractional SABR model》 --- 作者: Jiro Akahori, Xiaoming Song, and Tai-Ho Wang --- 最新提交年份: 2019 --- 英文摘要: Instantaneous volatility of logarithmic return in the lognormal fractional SABR model is driven by the exponentiation of a correlated fractional Brownian motion. Due to the mixed nature of driving Brownian and fractional Brownian motions, probability density for such a model is less studied in the literature. We show in this paper a bridge representation for the joint density of the lognormal fractional SABR model in a Fourier space. Evaluating the bridge representation along a properly chosen deterministic path yields a small time asymptotic expansion to the leading order for the probability density of the fractional SABR model. A direct generalization of the representation to joint density at multiple times leads to a heuristic derivation of the large deviations principle for the joint density in small time. Approximation of implied volatility is readily obtained by applying the Laplace asymptotic formula to the call or put prices and comparing coefficients. --- 中文摘要: 对数正态分数SABR模型中对数收益率的瞬时波动率是由相关分数布朗运动的指数驱动的。由于驱动布朗运动和分数布朗运动的混合性质,此类模型的概率密度在文献中研究较少。本文给出了对数正态分数阶SABR模型在Fourier空间中关节密度的桥表示。沿着正确选择的确定性路径评估桥表示,得到分数SABR模型概率密度领先阶的小时间渐近展开。通过多次直接推广关节密度表示,可以启发式推导出小时间内关节密度的大偏差原则。通过将拉普拉斯渐近公式应用于买入或卖出价格并比较系数,可以很容易地获得隐含波动率的近似值。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明