| 所在主题: | |
| 文件名: A_Deep_Causal_Inference_Approach_to_Measuring_the_Effects_of_Forming_Group_Loans.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3694458.html | |
| 附件大小: | |
|
英文标题:
《A Deep Causal Inference Approach to Measuring the Effects of Forming Group Loans in Online Non-profit Microfinance Platform》 --- 作者: Thai T. Pham and Yuanyuan Shen --- 最新提交年份: 2017 --- 英文摘要: Kiva is an online non-profit crowdsouring microfinance platform that raises funds for the poor in the third world. The borrowers on Kiva are small business owners and individuals in urgent need of money. To raise funds as fast as possible, they have the option to form groups and post loan requests in the name of their groups. While it is generally believed that group loans pose less risk for investors than individual loans do, we study whether this is the case in a philanthropic online marketplace. In particular, we measure the effect of group loans on funding time while controlling for the loan sizes and other factors. Because loan descriptions (in the form of texts) play an important role in lenders\' decision process on Kiva, we make use of this information through deep learning in natural language processing. In this aspect, this is the first paper that uses one of the most advanced deep learning techniques to deal with unstructured data in a way that can take advantage of its superior prediction power to answer causal questions. We find that on average, forming group loans speeds up the funding time by about 3.3 days. --- 中文摘要: Kiva是一个在线非营利众筹小额融资平台,为第三世界的穷人筹集资金。Kiva的借款人是小企业主和急需资金的个人。为了尽快筹集资金,他们可以选择组建小组,并以小组的名义提出贷款申请。虽然人们普遍认为团体贷款比个人贷款对投资者造成的风险更小,但我们研究了慈善在线市场是否存在这种情况。特别是,我们衡量了集团贷款对融资时间的影响,同时控制了贷款规模和其他因素。由于贷款描述(以文本形式)在Kiva上贷款人的决策过程中起着重要作用,我们通过自然语言处理的深入学习来利用这些信息。在这方面,这是第一篇使用最先进的深度学习技术之一来处理非结构化数据的论文,这种方法可以利用其卓越的预测能力来回答因果问题。我们发现,平均而言,形成集团贷款可将融资时间缩短约3.3天。 --- 分类信息: 一级分类:Statistics 统计学 二级分类:Machine Learning 机器学习 分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding 覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础 -- 一级分类:Quantitative Finance 数量金融学 二级分类:General Finance 一般财务 分类描述:Development of general quantitative methodologies with applications in finance 通用定量方法的发展及其在金融中的应用 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明