| 所在主题: | |
| 文件名: Stochastic_Gradient_Descent_in_Continuous_Time:_A_Central_Limit_Theorem.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3694962.html | |
| 附件大小: | |
|
英文标题:
《Stochastic Gradient Descent in Continuous Time: A Central Limit Theorem》 --- 作者: Justin Sirignano, Konstantinos Spiliopoulos --- 最新提交年份: 2019 --- 英文摘要: Stochastic gradient descent in continuous time (SGDCT) provides a computationally efficient method for the statistical learning of continuous-time models, which are widely used in science, engineering, and finance. The SGDCT algorithm follows a (noisy) descent direction along a continuous stream of data. The parameter updates occur in continuous time and satisfy a stochastic differential equation. This paper analyzes the asymptotic convergence rate of the SGDCT algorithm by proving a central limit theorem (CLT) for strongly convex objective functions and, under slightly stronger conditions, for non-convex objective functions as well. An $L^{p}$ convergence rate is also proven for the algorithm in the strongly convex case. The mathematical analysis lies at the intersection of stochastic analysis and statistical learning. --- 中文摘要: 连续时间随机梯度下降(SGDCT)为连续时间模型的统计学习提供了一种计算效率高的方法,广泛应用于科学、工程和金融领域。SGDCT算法沿着连续的数据流遵循(有噪声的)下降方向。参数更新是连续发生的,满足一个随机微分方程。本文通过证明强凸目标函数的中心极限定理(CLT)以及在稍强的条件下非凸目标函数的中心极限定理(CLT),分析了SGDCT算法的渐近收敛速度。在强凸情形下,证明了算法的$L ^{p}$收敛速度。数学分析是随机分析和统计学习的交叉点。 --- 分类信息: 一级分类:Mathematics 数学 二级分类:Probability 概率 分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory 概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论 -- 一级分类:Mathematics 数学 二级分类:Statistics Theory 统计理论 分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies 应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- 一级分类:Statistics 统计学 二级分类:Machine Learning 机器学习 分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding 覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础 -- 一级分类:Statistics 统计学 二级分类:Statistics Theory 统计理论 分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing. Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明