| 所在主题: | |
| 文件名: A_novel_improved_fuzzy_support_vector_machine_based_stock_price_trend_forecast_model.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3696080.html | |
| 附件大小: | |
|
英文标题:
《A novel improved fuzzy support vector machine based stock price trend forecast model》 --- 作者: Shuheng Wang, Guohao Li, Yifan Bao --- 最新提交年份: 2018 --- 英文摘要: Application of fuzzy support vector machine in stock price forecast. Support vector machine is a new type of machine learning method proposed in 1990s. It can deal with classification and regression problems very successfully. Due to the excellent learning performance of support vector machine, the technology has become a hot research topic in the field of machine learning, and it has been successfully applied in many fields. However, as a new technology, there are many limitations to support vector machines. There is a large amount of fuzzy information in the objective world. If the training of support vector machine contains noise and fuzzy information, the performance of the support vector machine will become very weak and powerless. As the complexity of many factors influence the stock price prediction, the prediction results of traditional support vector machine cannot meet people with precision, this study improved the traditional support vector machine fuzzy prediction algorithm is proposed to improve the new model precision. NASDAQ Stock Market, Standard & Poor\'s (S&P) Stock market are considered. Novel advanced- fuzzy support vector machine (NA-FSVM) is the proposed methodology. --- 中文摘要: 模糊支持向量机在股价预测中的应用。支持向量机是20世纪90年代提出的一种新型机器学习方法。它可以非常成功地处理分类和回归问题。由于支持向量机优良的学习性能,该技术已成为机器学习领域的研究热点,并已成功应用于许多领域。然而,作为一种新技术,支持向量机有很多局限性。客观世界中存在着大量的模糊信息。如果支持向量机的训练包含噪声和模糊信息,则支持向量机的性能将变得非常弱和无力。由于影响股票价格预测的因素很多,传统支持向量机的预测结果精度不能满足人们的要求,本研究改进了传统支持向量机模糊预测算法,提出了提高新模型精度的方法。考虑纳斯达克股票市尝标准普尔股票市常提出了一种新的高级模糊支持向量机(NA-FSVM)方法。 --- 分类信息: 一级分类:Statistics 统计学 二级分类:Machine Learning 机器学习 分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding 覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Statistical Finance 统计金融 分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data 统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明