搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  Robust_Log-Optimal_Strategy_with_Reinforcement_Learning.pdf
资料下载链接地址: https://bbs.pinggu.org/a-3700917.html
附件大小:
677.77 KB   举报本内容
英文标题:
《Robust Log-Optimal Strategy with Reinforcement Learning》
---
作者:
Yifeng Guo, Xingyu Fu, Yuyan Shi, Mingwen Liu
---
最新提交年份:
2018
---
英文摘要:
We proposed a new Portfolio Management method termed as Robust Log-Optimal Strategy (RLOS), which ameliorates the General Log-Optimal Strategy (GLOS) by approximating the traditional objective function with quadratic Taylor expansion. It avoids GLOS\'s complex CDF estimation process,hence resists the \"Butterfly Effect\" caused by estimation error. Besides,RLOS retains GLOS\'s profitability and the optimization problem involved in RLOS is computationally far more practical compared to GLOS. Further, we combine RLOS with Reinforcement Learning (RL) and propose the so-called Robust Log-Optimal Strategy with Reinforcement Learning (RLOSRL), where the RL agent receives the analyzed results from RLOS and observes the trading environment to make comprehensive investment decisions. The RLOSRL\'s performance is compared to some traditional strategies on several back tests, where we randomly choose a selection of constituent stocks of the CSI300 index as assets under management and the test results validate its profitability and stability.
---
中文摘要:
我们提出了一种新的投资组合管理方法,称为鲁棒对数最优策略(RLOS),该方法通过二次泰勒展开逼近传统的目标函数来改进一般对数最优策略(GLOS)。它避免了GLOS复杂的CDF估计过程,从而抵抗了由估计误差引起的“蝴蝶效应”。此外,RLOS保留了GLOS的盈利能力,与GLOS相比,RLOS所涉及的优化问题在计算上更加实用。此外,我们将RLOS与强化学习(RL)相结合,提出了所谓的鲁棒强化学习对数优化策略(RLOSRL),其中RL代理接收RLOS的分析结果,并观察交易环境,以做出全面的投资决策。在多次回溯测试中,我们将RLOSRL的表现与一些传统策略进行了比较,在回溯测试中,我们随机选择CSI300指数的成分股作为管理资产,测试结果验证了其盈利能力和稳定性。
---
分类信息:

一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--

---
PDF下载:
-->


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-27 06:23