| 所在主题: | |
| 文件名: Investor_Reaction_to_Financial_Disclosures_Across_Topics:_An_Application_of_Late.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3700929.html | |
| 附件大小: | |
|
英文标题:
《Investor Reaction to Financial Disclosures Across Topics: An Application of Latent Dirichlet Allocation》 --- 作者: Stefan Feuerriegel, Nicolas Pr\\\"ollochs --- 最新提交年份: 2018 --- 英文摘要: This paper provides a holistic study of how stock prices vary in their response to financial disclosures across different topics. Thereby, we specifically shed light into the extensive amount of filings for which no a priori categorization of their content exists. For this purpose, we utilize an approach from data mining - namely, latent Dirichlet allocation - as a means of topic modeling. This technique facilitates our task of automatically categorizing, ex ante, the content of more than 70,000 regulatory 8-K filings from U.S. companies. We then evaluate the subsequent stock market reaction. Our empirical evidence suggests a considerable discrepancy among various types of news stories in terms of their relevance and impact on financial markets. For instance, we find a statistically significant abnormal return in response to earnings results and credit rating, but also for disclosures regarding business strategy, the health sector, as well as mergers and acquisitions. Our results yield findings that benefit managers, investors and policy-makers by indicating how regulatory filings should be structured and the topics most likely to precede changes in stock valuations. --- 中文摘要: 本文全面研究了不同主题的股票价格对财务披露的反应。因此,我们特别揭示了大量的文件,这些文件的内容不存在先验分类。为此,我们利用数据挖掘的一种方法,即潜在Dirichlet分配,作为主题建模的一种手段。这项技术有助于我们提前对来自美国公司的70000多份8-K监管文件的内容进行自动分类。然后,我们评估随后的股市反应。我们的经验证据表明,不同类型的新闻故事在其相关性和对金融市场的影响方面存在很大差异。例如,我们发现,对盈利结果和信用评级,以及对商业战略、卫生部门以及并购的披露,都有统计上显著的异常回报。我们的研究结果表明,监管文件的结构应该如何,以及股票估值变化之前最可能出现的主题,从而使管理者、投资者和决策者受益。 --- 分类信息: 一级分类:Computer Science 计算机科学 二级分类:Computation and Language 计算与语言 分类描述:Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area. 涵盖自然语言处理。大致包括ACM科目I.2.7类的材料。请注意,人工语言(编程语言、逻辑学、形式系统)的工作,如果没有明确地解决广义的自然语言问题(自然语言处理、计算语言学、语音、文本检索等),就不适合这个领域。 -- 一级分类:Quantitative Finance 数量金融学 二级分类:General Finance 一般财务 分类描述:Development of general quantitative methodologies with applications in finance 通用定量方法的发展及其在金融中的应用 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明