| 所在主题: | |
| 文件名: Adversarial_Deep_Reinforcement_Learning_in_Portfolio_Management.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3701314.html | |
| 附件大小: | |
|
英文标题:
《Adversarial Deep Reinforcement Learning in Portfolio Management》 --- 作者: Zhipeng Liang, Hao Chen, Junhao Zhu, Kangkang Jiang, Yanran Li --- 最新提交年份: 2018 --- 英文摘要: In this paper, we implement three state-of-art continuous reinforcement learning algorithms, Deep Deterministic Policy Gradient (DDPG), Proximal Policy Optimization (PPO) and Policy Gradient (PG)in portfolio management. All of them are widely-used in game playing and robot control. What\'s more, PPO has appealing theoretical propeties which is hopefully potential in portfolio management. We present the performances of them under different settings, including different learning rates, objective functions, feature combinations, in order to provide insights for parameters tuning, features selection and data preparation. We also conduct intensive experiments in China Stock market and show that PG is more desirable in financial market than DDPG and PPO, although both of them are more advanced. What\'s more, we propose a so called Adversarial Training method and show that it can greatly improve the training efficiency and significantly promote average daily return and sharpe ratio in back test. Based on this new modification, our experiments results show that our agent based on Policy Gradient can outperform UCRP. --- 中文摘要: 在本文中,我们实现了三种最先进的连续强化学习算法,即投资组合管理中的深层确定性策略梯度(DDPG)、近端策略优化(PPO)和策略梯度(PG)。它们都被广泛应用于游戏和机器人控制中。此外,PPO具有诱人的理论特性,有望在投资组合管理中发挥潜力。我们展示了它们在不同设置下的性能,包括不同的学习率、目标函数、特征组合,以便为参数调整、特征选择和数据准备提供见解。我们还对中国股市进行了深入的实验,结果表明,尽管二者都比较先进,但在金融市场上,PG比DDPG和PPO更可龋此外,我们还提出了一种所谓的对抗式训练方法,并表明该方法可以大大提高训练效率,显著提高平均日回报率和回测夏普比。基于这种新的修改,我们的实验结果表明,基于策略梯度的代理可以优于UCRP。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Portfolio Management 项目组合管理 分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement 证券选择与优化、资本配置、投资策略与绩效评价 -- 一级分类:Computer Science 计算机科学 二级分类:Machine Learning 机器学习 分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods. 关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。 -- 一级分类:Statistics 统计学 二级分类:Machine Learning 机器学习 分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding 覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明