| 所在主题: | |
| 文件名: An_Artificial_Neural_Network-based_Stock_Trading_System_Using_Technical_Analysis.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3703531.html | |
| 附件大小: | |
|
英文标题:
《An Artificial Neural Network-based Stock Trading System Using Technical Analysis and Big Data Framework》 --- 作者: O.B. Sezer, M. Ozbayoglu, E. Dogdu --- 最新提交年份: 2017 --- 英文摘要: In this paper, a neural network-based stock price prediction and trading system using technical analysis indicators is presented. The model developed first converts the financial time series data into a series of buy-sell-hold trigger signals using the most commonly preferred technical analysis indicators. Then, a Multilayer Perceptron (MLP) artificial neural network (ANN) model is trained in the learning stage on the daily stock prices between 1997 and 2007 for all of the Dow30 stocks. Apache Spark big data framework is used in the training stage. The trained model is then tested with data from 2007 to 2017. The results indicate that by choosing the most appropriate technical indicators, the neural network model can achieve comparable results against the Buy and Hold strategy in most of the cases. Furthermore, fine tuning the technical indicators and/or optimization strategy can enhance the overall trading performance. --- 中文摘要: 本文提出了一种基于神经网络的股票价格预测与交易系统,该系统采用技术分析指标。开发的模型首先使用最常用的首选技术分析指标将金融时间序列数据转换为一系列买入卖出持有触发信号。然后,在学习阶段对1997年至2007年间所有Dow30股票的日股价训练多层感知器(MLP)人工神经网络(ANN)模型。培训阶段使用Apache Spark大数据框架。然后使用2007年至2017年的数据对训练后的模型进行测试。结果表明,通过选择最合适的技术指标,神经网络模型可以在大多数情况下取得与买入并持有策略相当的结果。此外,微调技术指标和/或优化策略可以提高整体交易绩效。 --- 分类信息: 一级分类:Computer Science 计算机科学 二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学 分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics). 涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Trading and Market Microstructure 交易与市场微观结构 分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making 市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市 -- 一级分类:Statistics 统计学 二级分类:Machine Learning 机器学习 分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding 覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明