| 所在主题: | |
| 文件名: Physics_and_Derivatives:_Effective-Potential_Path-Integral_Approximations_of_Arr.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3703661.html | |
| 附件大小: | |
|
英文标题:
《Physics and Derivatives: Effective-Potential Path-Integral Approximations of Arrow-Debreu Densities》 --- 作者: Luca Capriotti and Ruggero Vaia --- 最新提交年份: 2019 --- 英文摘要: We show how effective-potential path-integrals methods, stemming on a simple and nice idea originally due to Feynman and successfully employed in Physics for a variety of quantum thermodynamics applications, can be used to develop an accurate and easy-to-compute semi-analytical approximation of transition probabilities and Arrow-Debreu densities for arbitrary diffusions. We illustrate the accuracy of the method by presenting results for the Black-Karasinski and the GARCH linear models, for which the proposed approximation provides remarkably accurate results, even in regimes of high volatility, and for multi-year time horizons. The accuracy and the computational efficiency of the proposed approximation makes it a viable alternative to fully numerical schemes for a variety of derivatives pricing applications. --- 中文摘要: 我们展示了有效的势路积分方法,该方法源于费曼最初提出的一个简单而好的想法,并成功地应用于各种量子热力学应用的物理中,可以用来开发一个精确且易于计算的任意扩散的跃迁概率和Arrow-Debreu密度的半解析近似。我们通过给出Black-Karasinski和GARCH线性模型的结果来说明该方法的准确性,对于这些模型,所提出的近似方法提供了非常精确的结果,即使是在高波动率的情况下,也可以提供多年时间范围的结果。该近似的准确性和计算效率使其成为各种衍生品定价应用中完全数值格式的可行替代方案。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明