| 所在主题: | |
| 文件名: Estimating_Dynamic_Conditional_Spread_Densities_to_Optimise_Daily_Storage_Tradin.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3703754.html | |
| 附件大小: | |
|
英文标题:
《Estimating Dynamic Conditional Spread Densities to Optimise Daily Storage Trading of Electricity》 --- 作者: Ekaterina Abramova and Derek Bunn --- 最新提交年份: 2019 --- 英文摘要: This paper formulates dynamic density functions, based upon skewed-t and similar representations, to model and forecast electricity price spreads between different hours of the day. This supports an optimal day ahead storage and discharge schedule, and thereby facilitates a bidding strategy for a merchant arbitrage facility into the day-ahead auctions for wholesale electricity. The four latent moments of the density functions are dynamic and conditional upon exogenous drivers, thereby permitting the mean, variance, skewness and kurtosis of the densities to respond hourly to such factors as weather and demand forecasts. The best specification for each spread is selected based on the Pinball Loss function, following the closed form analytical solutions of the cumulative density functions. Those analytical properties also allow the calculation of risk associated with the spread arbitrages. From these spread densities, the optimal daily operation of a battery storage facility is determined. --- 中文摘要: 本文基于skewed-t和类似表示法,建立动态密度函数,以建模和预测一天中不同时段之间的电价差。这支持了最佳的日前存储和放电计划,从而有助于将商户套利设施的投标策略引入日前批发电力拍卖。密度函数的四个潜在时刻是动态的,取决于外部驱动因素,从而允许密度的平均值、方差、偏度和峰度每小时对天气和需求预测等因素作出响应。根据弹球损失函数,根据累积密度函数的闭合形式解析解,选择每个排列的最佳规格。这些分析属性还允许计算与利差套利相关的风险。根据这些分布密度,确定了蓄电池存储设施的最佳日常运行。 --- 分类信息: 一级分类:Statistics 统计学 二级分类:Applications 应用程序 分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences 生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学 -- 一级分类:Computer Science 计算机科学 二级分类:Machine Learning 机器学习 分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods. 关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。 -- 一级分类:Economics 经济学 二级分类:Econometrics 计量经济学 分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data. 计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Trading and Market Microstructure 交易与市场微观结构 分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making 市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市 -- 一级分类:Statistics 统计学 二级分类:Machine Learning 机器学习 分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding 覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明