| 所在主题: | |
| 文件名: A_memory-based_method_to_select_the_number_of_relevant_components_in_Principal_C.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3704004.html | |
| 附件大小: | |
|
英文标题:
《A memory-based method to select the number of relevant components in Principal Component Analysis》 --- 作者: Anshul Verma and Pierpaolo Vivo and Tiziana Di Matteo --- 最新提交年份: 2019 --- 英文摘要: We propose a new data-driven method to select the optimal number of relevant components in Principal Component Analysis (PCA). This new method applies to correlation matrices whose time autocorrelation function decays more slowly than an exponential, giving rise to long memory effects. In comparison with other available methods present in the literature, our procedure does not rely on subjective evaluations and is computationally inexpensive. The underlying basic idea is to use a suitable factor model to analyse the residual memory after sequentially removing more and more components, and stopping the process when the maximum amount of memory has been accounted for by the retained components. We validate our methodology on both synthetic and real financial data, and find in all cases a clear and computationally superior answer entirely compatible with available heuristic criteria, such as cumulative variance and cross-validation. --- 中文摘要: 我们提出了一种新的数据驱动方法来选择主成分分析(PCA)中相关成分的最佳数目。这种新方法适用于时间自相关函数衰减比指数衰减慢的相关矩阵,从而产生长记忆效应。与文献中的其他可用方法相比,我们的方法不依赖于主观评估,并且计算成本较低。其基本思想是使用一个合适的因子模型来分析顺序移除越来越多的组件后的剩余内存,并在保留的组件占用了最大内存量时停止该过程。我们在合成和真实财务数据上验证了我们的方法,并发现在所有情况下,都有一个清晰且计算上优越的答案,完全符合可用的启发式标准,如累积方差和交叉验证。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Statistical Finance 统计金融 分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data 统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明