| 所在主题: | |
| 文件名: Statistical_Learning_for_Probability-Constrained_Stochastic_Optimal_Control.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3704131.html | |
| 附件大小: | |
|
英文标题:
《Statistical Learning for Probability-Constrained Stochastic Optimal Control》 --- 作者: Alessandro Balata and Michael Ludkovski and Aditya Maheshwari and Jan Palczewski --- 最新提交年份: 2020 --- 英文摘要: We investigate Monte Carlo based algorithms for solving stochastic control problems with probabilistic constraints. Our motivation comes from microgrid management, where the controller tries to optimally dispatch a diesel generator while maintaining low probability of blackouts. The key question we investigate are empirical simulation procedures for learning the admissible control set that is specified implicitly through a probability constraint on the system state. We propose a variety of relevant statistical tools including logistic regression, Gaussian process regression, quantile regression and support vector machines, which we then incorporate into an overall Regression Monte Carlo (RMC) framework for approximate dynamic programming. Our results indicate that using logistic or Gaussian process regression to estimate the admissibility probability outperforms the other options. Our algorithms offer an efficient and reliable extension of RMC to probability-constrained control. We illustrate our findings with two case studies for the microgrid problem. --- 中文摘要: 我们研究了基于蒙特卡罗的算法来解决具有概率约束的随机控制问题。我们的动机来自微电网管理,在微电网管理中,控制器试图以最佳方式调度柴油发电机,同时保持低停电概率。我们研究的关键问题是通过对系统状态的概率约束来学习隐含指定的容许控制集的经验模拟过程。我们提出了各种相关的统计工具,包括logistic回归、高斯过程回归、分位数回归和支持向量机,然后将其纳入近似动态规划的总体回归蒙特卡罗(RMC)框架。我们的结果表明,使用logistic或Gaussian过程回归估计可接受概率优于其他选项。我们的算法将RMC有效、可靠地推广到概率约束控制。我们用两个微电网问题的案例研究来说明我们的发现。 --- 分类信息: 一级分类:Mathematics 数学 二级分类:Optimization and Control 优化与控制 分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory 运筹学,线性规划,控制论,系统论,最优控制,博弈论 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明