| 所在主题: | |
| 文件名: Investment_Ranking_Challenge:_Identifying_the_best_performing_stocks_based_on_th.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3710249.html | |
| 附件大小: | |
|
英文标题:
《Investment Ranking Challenge: Identifying the best performing stocks based on their semi-annual returns》 --- 作者: Shanka Subhra Mondal, Sharada Prasanna Mohanty, Benjamin Harlander, Mehmet Koseoglu, Lance Rane, Kirill Romanov, Wei-Kai Liu, Pranoot Hatwar, Marcel Salathe, Joe Byrum --- 最新提交年份: 2019 --- 英文摘要: In the IEEE Investment ranking challenge 2018, participants were asked to build a model which would identify the best performing stocks based on their returns over a forward six months window. Anonymized financial predictors and semi-annual returns were provided for a group of anonymized stocks from 1996 to 2017, which were divided into 42 non-overlapping six months period. The second half of 2017 was used as an out-of-sample test of the model\'s performance. Metrics used were Spearman\'s Rank Correlation Coefficient and Normalized Discounted Cumulative Gain (NDCG) of the top 20% of a model\'s predicted rankings. The top six participants were invited to describe their approach. The solutions used were varied and were based on selecting a subset of data to train, combination of deep and shallow neural networks, different boosting algorithms, different models with different sets of features, linear support vector machine, combination of convoltional neural network (CNN) and Long short term memory (LSTM). --- 中文摘要: 在2018年IEEE投资排名挑战赛中,参与者被要求构建一个模型,该模型将根据其在未来六个月内的回报确定表现最佳的股票。从1996年到2017年,为一组匿名股票提供了匿名财务预测和半年回报,这些股票被分为42个不重叠的六个月期。2017年下半年被用作模型性能的抽样测试。使用的指标是斯皮尔曼排名相关系数和模型预测排名前20%的归一化贴现累积收益(NDCG)。前六名参与者被邀请描述他们的方法。使用的解决方案多种多样,基于选择要训练的数据子集、深度和浅层神经网络的组合、不同的boosting算法、具有不同特征集的不同模型、线性支持向量机、卷积神经网络(CNN)和长-短期记忆(LSTM)的组合。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Statistical Finance 统计金融 分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data 统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用 -- 一级分类:Computer Science 计算机科学 二级分类:Machine Learning 机器学习 分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods. 关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明