| 所在主题: | |
| 文件名: Levy Processes in FinanceTheory, Numerics, and Empirical Facts.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-371047.html | |
| 附件大小: | |
|
Lévy Processes in Finance: Theory, Numerics, and Empirical Facts
Dissertation zur Erlangung des Doktorgrades der Mathematischen Fakultät der Albert-Ludwigs-Universität Freiburg i. Br. vorgelegt von Sebastian Raible Januar 2000 Preface Lévy processes are an excellent tool for modelling price processes in mathematical finance. On the one hand, they are very flexible, since for any time increment t any infinitely divisible distribution can be chosen as the increment distribution over periods of time t. On the other hand, they have a simple structure in comparison with general semimartingales. Thus stochastic models based on Lévy processes often allow for analytically or numerically tractable formulas. This is a key factor for practical applications. This thesis is divided into two parts. The first, consisting of Chapters 1, 2, and 3, is devoted to the study of stock price models involving exponential Lévy processes. In the second part, we study term structure models driven by Lévy processes. This part is a continuation of the research that started with the author's diploma thesis Raible (1996) and the article Eberlein and Raible (1999). Contents Preface iii 1 Exponential Lévy Processes in Stock Price Modeling 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Exponential Lévy Processes as Stock Price Models . . . . . . . . . . . . . . . . . . . . 2 1.3 EsscherTransforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 OptionPricing byEsscherTransforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 ADifferential Equation for theOptionPricingFunction . . . . . . . . . . . . . . . . . . 12 1.6 ACharacterization of theEsscherTransform. . . . . . . . . . . . . . . . . . . . . . . . 14 2 On the Lévy Measure of Generalized Hyperbolic Distributions 21 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Calculating theLévyMeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 EsscherTransforms and theLévyMeasure . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 FourierTransformof theModifiedLévyMeasure . . . . . . . . . . . . . . . . . . . . . 28 2.4.1 The Lévy Measure of a Generalized Hyperbolic Distribution . . . . . . . . . . . 30 2.4.2 AsymptoticExpansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4.3 Calculating theFourier Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.4 SumRepresentations forSomeBessel Functions . . . . . . . . . . . . . . . . . 37 2.4.5 ExplicitExpressions for theFourierBacktransform . . . . . . . . . . . . . . . . 38 2.4.6 Behavior of the Density around the Origin . . . . . . . . . . . . . . . . . . . . . 38 2.4.7 NIG Distributions as a Special Case . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5 Absolute Continuity and Singularity for Generalized Hyperbolic Lévy Processes . . . . 41 2.5.1 ChangingMeasures byChangingTriplets . . . . . . . . . . . . . . . . . . . . . 41 2.5.2 Allowed andDisallowedChanges ofParameters . . . . . . . . . . . . . . . . . 42 2.6 The GH Parameters and as Path Properties . . . . . . . . . . . . . . . . . . . . . . . 47 2.6.1 Determination of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.6.2 Determination of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.6.3 Implications andVisualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.7 Implications forOption Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 Computation of European Option Prices Using Fast Fourier Transforms 61 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2 Definitions andBasicAssumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3 ConvolutionRepresentation forOptionPricing Formulas . . . . . . . . . . . . . . . . . 63 3.4 Standard andExoticOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.1 PowerCallOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.2 PowerPutOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4.3 AsymptoticBehavior of theBilateralLaplaceTransforms . . . . . . . . . . . . 67 3.4.4 Self-Quanto Calls and Puts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5 Approximation of theFourier Integrals bySums . . . . . . . . . . . . . . . . . . . . . . 69 3.5.1 FastFourierTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.6 Outline of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.7 Applicability to Different Stock Price Models . . . . . . . . . . . . . . . . . . . . . . . 72 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 The Lévy Term Structure Model 77 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 Overviewof theLévyTermStructureModel . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 The Markov Property of the Short Rate: Generalized Hyperbolic Driving Lévy Processes 81 4.4 AffineTermStructures intheLévyTermStructureModel . . . . . . . . . . . . . . . . . 85 4.5 Differential Equations for theOptionPrice . . . . . . . . . . . . . . . . . . . . . . . . . 87 5 Bond Price Models: Empirical Facts 93 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 LogReturns in theGaussianHJMModel . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.3 TheDataset and itsPreparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3.1 Calculating Zero Coupon Bond Prices and Log Returns From the Yields Data . . 95 5.3.2 AFirstAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.4 Assessing the Goodness of Fit of the Gaussian HJM Model . . . . . . . . . . . . . . . . 99 5.4.1 VisualAssessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.4.2 Quantitative Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.5 Normal Inverse Gaussian as Alternative Log Return Distribution . . . . . . . . . . . . . 103 5.5.1 VisualAssessment ofFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.5.2 Quantitative Assessment of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6 Lévy Term Structure Models: Uniqueness of the Martingale Measure 109 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 The Björk/Di Masi/Kabanov/Runggaldier Framework . . . . . . . . . . . . . . . . . . . 110 6.3 TheLévyTermStructureModel as aSpecialCase . . . . . . . . . . . . . . . . . . . . . 111 6.3.1 GeneralAssumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3.2 Classification in the Björk/Di Masi/Kabanov/Runggaldier Framework . . . . . . 111 6.4 SomeFacts fromStochasticAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.5 Uniqueness of theMartingaleMeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7 Lévy Term-Structure Models: Generalization to Multivariate Driving Lévy Processes and Stochastic Volatility Structures 125 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.2 Constructing Martingales of Exponential Form . . . . . . . . . . . . . . . . . . . . . . 125 7.3 ForwardRates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 A Generalized Hyperbolic and CGMY Distributions and Lévy Processes 137 A.1 Generalized Hyperbolic Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 A.2 Important Subclasses ofGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 A.2.1 Hyperbolic Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 A.2.2 Normal Inverse Gaussian (NIG) Distributions . . . . . . . . . . . . . . . . . . . 139 A.3 The Carr-Geman-Madan-Yor (CGMY) Class of Distributions . . . . . . . . . . . . . . . 139 A.3.1 Variance Gamma Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 A.3.2 CGMY Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.3.3 Reparameterization of the Variance Gamma Distribution . . . . . . . . . . . . . 143 A.4 Generation of (Pseudo-)Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 145 A.5 Comparison of NIG and Hyperbolic Distributions . . . . . . . . . . . . . . . . . . . . . 147 A.5.1 Implications for Maximum Likelihood Estimation . . . . . . . . . . . . . . . . 148 A.6 GeneralizedHyperbolic LévyMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 B Complements to Chapter 3 151 B.1 Convolutions andLaplace transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 B.2 Modeling theLogReturn on aSpotContract Instead of aForwardContract . . . . . . . 152 Index 160 viii |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明