| 所在主题: | |
| 文件名: Agglomerative_Likelihood_Clustering.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3711030.html | |
| 附件大小: | |
|
英文标题:
《Agglomerative Likelihood Clustering》 --- 作者: Lionel Yelibi, Tim Gebbie --- 最新提交年份: 2021 --- 英文摘要: We consider the problem of fast time-series data clustering. Building on previous work modeling the correlation-based Hamiltonian of spin variables we present an updated fast non-expensive Agglomerative Likelihood Clustering algorithm (ALC). The method replaces the optimized genetic algorithm based approach (f-SPC) with an agglomerative recursive merging framework inspired by previous work in Econophysics and Community Detection. The method is tested on noisy synthetic correlated time-series data-sets with built-in cluster structure to demonstrate that the algorithm produces meaningful non-trivial results. We apply it to time-series data-sets as large as 20,000 assets and we argue that ALC can reduce compute time costs and resource usage cost for large scale clustering for time-series applications while being serialized, and hence has no obvious parallelization requirement. The algorithm can be an effective choice for state-detection for online learning in a fast non-linear data environment because the algorithm requires no prior information about the number of clusters. --- 中文摘要: 我们考虑了快速时间序列数据聚类问题。在对基于关联的自旋变量哈密顿量建模的基础上,我们提出了一种更新的快速非昂贵凝聚似然聚类算法(ALC)。该方法将基于优化遗传算法的方法(f-SPC)替换为凝聚式递归合并框架,该框架受到了经济物理学和社区检测领域先前工作的启发。该方法在具有内置聚类结构的噪声合成相关时间序列数据集上进行了测试,结果表明该算法产生了有意义的非平凡结果。我们将其应用于多达20000个资产的时间序列数据集,并认为ALC可以在序列化的同时减少时间序列应用程序大规模集群的计算时间成本和资源使用成本,因此没有明显的并行化要求。由于该算法不需要关于聚类数目的先验信息,因此可以作为快速非线性数据环境中在线学习状态检测的有效选择。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- 一级分类:Physics 物理学 二级分类:Data Analysis, Statistics and Probability 数据分析、统计与概率 分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties. 物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。 -- 一级分类:Statistics 统计学 二级分类:Machine Learning 机器学习 分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding 覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明