| 所在主题: | |
| 文件名: Risk_Management_via_Anomaly_Circumvent:_Mnemonic_Deep_Learning_for_Midterm_Stock.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3711037.html | |
| 附件大小: | |
|
英文标题:
《Risk Management via Anomaly Circumvent: Mnemonic Deep Learning for Midterm Stock Prediction》 --- 作者: Xinyi Li, Yinchuan Li, Xiao-Yang Liu and Christina Dan Wang --- 最新提交年份: 2019 --- 英文摘要: Midterm stock price prediction is crucial for value investments in the stock market. However, most deep learning models are essentially short-term and applying them to midterm predictions encounters large cumulative errors because they cannot avoid anomalies. In this paper, we propose a novel deep neural network Mid-LSTM for midterm stock prediction, which incorporates the market trend as hidden states. First, based on the autoregressive moving average model (ARMA), a midterm ARMA is formulated by taking into consideration both hidden states and the capital asset pricing model. Then, a midterm LSTM-based deep neural network is designed, which consists of three components: LSTM, hidden Markov model and linear regression networks. The proposed Mid-LSTM can avoid anomalies to reduce large prediction errors, and has good explanatory effects on the factors affecting stock prices. Extensive experiments on S&P 500 stocks show that (i) the proposed Mid-LSTM achieves 2-4% improvement in prediction accuracy, and (ii) in portfolio allocation investment, we achieve up to 120.16% annual return and 2.99 average Sharpe ratio. --- 中文摘要: 中期股价预测对于股票市场的价值投资至关重要。然而,大多数深度学习模型本质上是短期的,将其应用于中期预测会遇到巨大的累积误差,因为它们无法避免异常。在本文中,我们提出了一种新的用于中期股票预测的深度神经网络Mid-LSTM,它将市场趋势作为隐藏状态。首先,在自回归滑动平均模型(ARMA)的基础上,通过同时考虑隐藏状态和资本资产定价模型,建立了一个中期ARMA。然后,设计了一个基于LSTM的中期深度神经网络,该网络由LSTM、隐马尔可夫模型和线性回归网络三部分组成。所提出的中期LSTM可以避免异常,减少较大的预测误差,对影响股价的因素具有良好的解释效果。对标准普尔500指数股票的大量实验表明:(i)所提出的中期LSTM在预测精度上提高了2-4%,并且(ii)在组合配置投资中,我们实现了120.16%的年回报率和2.99的平均夏普比率。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Statistical Finance 统计金融 分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data 统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用 -- 一级分类:Computer Science 计算机科学 二级分类:Machine Learning 机器学习 分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods. 关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。 -- 一级分类:Statistics 统计学 二级分类:Machine Learning 机器学习 分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding 覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明