| 所在主题: | |
| 文件名: Sparse_Portfolio_Selection_via_Quasi-Norm_Regularization.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3714148.html | |
| 附件大小: | |
|
英文标题:
《Sparse Portfolio Selection via Quasi-Norm Regularization》 --- 作者: Caihua Chen, Xindan Li, Caleb Tolman, Suyang Wang, Yinyu Ye --- 最新提交年份: 2013 --- 英文摘要: In this paper, we propose $\\ell_p$-norm regularized models to seek near-optimal sparse portfolios. These sparse solutions reduce the complexity of portfolio implementation and management. Theoretical results are established to guarantee the sparsity of the second-order KKT points of the $\\ell_p$-norm regularized models. More interestingly, we present a theory that relates sparsity of the KKT points with Projected correlation and Projected Sharpe ratio. We also design an interior point algorithm to obtain an approximate second-order KKT solution of the $\\ell_p$-norm models in polynomial time with a fixed error tolerance, and then test our $\\ell_p$-norm modes on S&P 500 (2008-2012) data and international market data.\\ The computational results illustrate that the $\\ell_p$-norm regularized models can generate portfolios of any desired sparsity with portfolio variance and portfolio return comparable to those of the unregularized Markowitz model with cardinality constraint. Our analysis of a combined model lead us to conclude that sparsity is not directly related to overfitting at all. Instead, we find that sparsity moderates overfitting only indirectly. A combined $\\ell_1$-$\\ell_p$ model shows that the proper choose of leverage, which is the amount of additional buying-power generated by selling short can mitigate overfitting; A combined $\\ell_2$-$\\ell_p$ model is able to produce extremely high performing portfolios that exceeded the 1/N strategy and all $\\ell_1$ and $\\ell_2$ regularized portfolios. --- 中文摘要: 在本文中,我们提出了$\\ ell\\u p$-范数正则化模型来寻求接近最优的稀疏投资组合。这些稀疏的解决方案降低了项目组合实施和管理的复杂性。建立了保证$\\ ell\\u p$-范数正则化模型二阶KKT点稀疏性的理论结果。更有趣的是,我们提出了一个理论,将KKT点的稀疏性和投影相关性和投影夏普比联系起来。我们还设计了一个内点算法,以获得多项式时间内具有固定误差容限的$\\ell\\u p$-范数模型的近似二阶KKT解,然后在标准普尔500(2008-2012)数据和国际市场数据上测试我们的$\\ell\\u p$-范数模型。\\计算结果表明$\\ ell\\u p$-范数正则化模型可以生成任意稀疏度的投资组合,其投资组合方差和投资组合收益与基数约束下的非正则化Markowitz模型相当。通过对组合模型的分析,我们得出结论,稀疏性与过度拟合没有直接关系。相反,我们发现稀疏性只是间接地缓和了过度拟合。组合的$\\ellu 1$-$\\ellu p$模型表明,适当选择杠杆率,即卖空产生的额外购买力,可以缓解过度拟合;组合的$\\ellu 2$-$\\ellu p$模型能够产生超过1/N策略的极高绩效投资组合,以及所有$\\ellu 1$和$\\ellu 2$正规化投资组合。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Portfolio Management 项目组合管理 分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement 证券选择与优化、资本配置、投资策略与绩效评价 -- 一级分类:Mathematics 数学 二级分类:Optimization and Control 优化与控制 分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory 运筹学,线性规划,控制论,系统论,最优控制,博弈论 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明