| 所在主题: | |
| 文件名: Math finance - City u of hk.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-371443.html | |
| 附件大小: | |
|
Lectures on Mathematical Finance
M. Jeanblanc City University, HONG KONG June 2001 Contents 1 Pricing and Hedging 3 1.1 Discrete time . . . . 3 1.1.1 Binomial approach . . . . . . . 3 1.1.2 Two dates, several assets and several states of the world . . . . 5 1.1.3 Multiperiod discrete time model . 6 1.2 Continuous time model 8 1.2.1 The Bachelier model. . . . . 8 1.2.2 Martingales . 8 1.2.3 Black and Scholes model . . . . 8 1.2.4 PDE approach . 9 1.2.5 Martingale approach . . . . . . 10 1.2.6 Discounted processes. . . . . 10 1.2.7 Girsanov's theorem . . . . . . . 11 1.2.8 European options 12 1.2.9 Derivative products . . . . . . 13 2 Single jump and Default processes 17 2.1 A toy model . . . . . 17 2.1.1 Payment at Maturity . . . . . . 18 2.1.2 Payment at hit . 19 2.1.3 Risk neutral probability measure, martingales . . 20 2.2 Successive default times 21 2.2.1 Two times . . 21 2.2.2 Copulas . . . 22 2.2.3 More than two times . . . . . . 23 2.3 Elementary martingale . 23 2.3.1 Intensity process 24 2.3.2 Representation theorem . . . . 25 2.3.3 Partial information. . . . . . 26 2.4 Cox Processes and Extensions . . . . . 26 2.4.1 Construction of Cox Processes with a given stochastic intensity 26 2.4.2 Conditional Expectations . . . 27 2.4.3 Conditional Expectation of F1-Measurable Random Variables 29 2.4.4 Defaultable Zero-Coupon Bond 29 2.4.5 Stochastic boundary . . . . . . 30 2.4.6 Representation theorem . . . . 30 2.4.7 Hedging contingent claims . . . 31 2.5 General Case . . . . 32 2.5.1 Conditional expectation . . . . 32 2.5.2 Ordered Random Times . . . . 33 2.6 In_mum and supremum, general case35 2.7 Correlated default time 36 3 Optimal portfolio 39 3.1 Discrete time . . . . 39 3.1.1 Two dates, 2 assets, complete case 39 3.1.2 Two dates Model, d + 1 assets 41 3.1.3 Incomplete markets . . . . . 42 3.1.4 Complete case . 43 3.1.5 Multiperiod Discrete time model . 43 3.1.6 Markovitz e_cient portfolio . . 44 3.2 Continuous time models. Maximization of terminal wealth in a complete market. . . 45 3.2.1 A continuous time two assets model . . . . . . . 45 3.2.2 Historical probability . . . . . . 45 3.2.3 The Dynamic programming method . . . . . . . 47 3.3 Consumption and terminal wealth . . 47 3.3.1 The martingale method . . . . 47 3.3.2 The Dynamic programming method . . . . . . . 49 3.3.3 Income . . . 51 4 Portfolio Insurance 55 4.1 Introduction . . . . . 55 4.2 Classical insurance strategies . . . . . 56 4.2.1 Strategic allocation and general framework . . . 56 4.2.2 European versus American guarantee 4.2.3 Stop loss strategy 58 4.2.4 CPPI strategy . 58 4.2.5 OBPI Strategy . 59 4.2.6 Comparison of performances . 61 4.3 OBPI Optimality for a European Guarantee . . . . . . . 61 4.3.1 Choice of the strategic allocation and properties 62 4.3.2 Choice of the tactic allocation . 62 4.3.3 Optimality of the tactic allocation 63 4.4 American case in the Black and Scholes framework . . . 63 4.4.1 American Put Based strategy . 64 4.4.2 Properties of the American put price . . . . . . . 64 4.4.3 An adapted self-_nancing strategy 65 4.4.4 Description of the American Put Based Strategy 66 4.5 American case for general complete markets . . . . . . . 68 4.5.1 Price of an American put . . . 68 4.5.2 Self-_nancing strategy . . . . . 70 4.5.3 Optimality . 70 4.6 Optimality results for general utility functions case . . . 72 4.6.1 European guarantee . . . . . . 72 4.6.2 American guarantee . . . . . . 73 5 Incomplete markets 79 5.1 Discrete time. Example 79 5.1.1 Case of a contingent claim . . . 80 5.1.2 Range of price for a European call . . . . . . .. . . . . 83 5.1.3 Two dates, continuum prices . 84 5.1.4 Bid-ask price 85 5.2 Discrete time, general setting : Bid-ask spread . . . . . .. . . 86 5.3 Continuous time . . 86 5.3.1 Superhedging price . . . . . . . 87 5.3.2 Choice of the model . . . . . . 88 5.3.3 Bounds for stochastic volatility 88 5.3.4 Jump di_usion processes . . . . 89 5.3.5 Transaction costs 91 5.3.6 Variance hedging 91 5.3.7 Remaining risk . 92 5.3.8 Reservation price 92 5.3.9 Davis approach . 92 5.3.10 Minimal entropy 93 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明