| 所在主题: | |
| 文件名: Intro to prbability and stochastic processes for finance.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-371449.html | |
| 附件大小: | |
|
Introduction to Probability Theory and Stochastic Processes for Finance
Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Contents 1 Introduction to Probability Theory 4 1.1 The BinomialModel . . . .. . . . 4 1.1.1 The Risky Asset . . . .. . . 4 1.1.2 The Riskless Asset . . . . . . . . . . . . . . . 4 1.1.3 A Basic No Arbitrage Condition . . . .. . . 5 1.1.4 Some Basic Remarks . . . . . .. . 5 1.1.5 Pricing Derivatives: a first Example . .. . . 5 1.2 Finite Probability Spaces . . .. . . . . . . . 7 1.2.1 Measurable Spaces . . . . . . . . 7 1.2.2 Probabilitymeasures . . . . . . . . 11 1.2.3 RandomVariables . . . . . . . . . . . 14 1.2.4 Expected Value of Random Variables Defined on Finite Measurable Spaces 15 1.2.5 Examples of Probability Spaces and Random Variables with Finite Sample Space . . . . . . . . . . . . 16 1.3 General Probability Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.1 Some First Examples of Probability Spaces with non finite Sample Spaces . 18 1.3.2 Continuity Properties of ProbabilityMeasures . . . . . . . . . . . . . . . . 20 1.3.3 RandomVariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.4 Expected Value and Lebesgue Integral . . . . . . . . . . . . . . . . . . . . . 25 1.3.5 Some Further Examples of Probability Spaces with uncountable Sample Spaces 28 1.4 Stochastic Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 Conditional Expectations and Martingales 33 2.1 The BinomialModel OnceMore . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Sub Sigma Algebras and (Partial) Information . . . . . . . . . . . . . . . . . . . . 34 2.3 Conditional Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.2 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4 Martingale Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Pricing Principles in the Absence of Arbitrage 44 3.1 Stock Prices, Risk Neutral Probability Measures and Martingales . . . . . . . . . . 45 3.2 Self Financing Strategies, Risk Neutral Probability Measures and Martingales . . . 46 3.3 Existence of Risk Neutral Probability Measures and Derivatives Pricing . . . . . . 48 3.4 Uniqueness of Risk Neutral ProbabilityMeasures and Derivatives Hedging . . . . . 50 3.5 Existence of Risk Neutral Probability Measures and Absence of Arbitrage . . . . . 52 4 Introduction to Stochastic Processes 52 4.1 Basic Definitions . . . . . . . . . . . 52 4.2 Discrete Time BrownianMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3 Girsanov Theorem: Application to a Semicontinuous PricingModel . . . . . . . . . 57 4.3.1 A Semicontinuous PricingModel . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.2 Risk Neutral Valuation in the SemicontinuousModel . . . . . . . . . . . . . 58 4.3.3 A Discrete Time Formulation of Girsanov Theorem. . . . . . . . . . . . . . 60 4.3.4 A Discrete Time Derivation of Black and Scholes Formula . . . . . . . . . . 64 4.4 Continuous Time BrownianMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5 Introduction to Stochastic Calculus 71 5.1 Starting Point,Motivation . . . . . . . . . . . . 71 5.2 The Stochastic Integral . . . . . .. . . . . . 73 5.2.1 Some Basic Preliminaries . . . .. . . 74 5.2.2 Simple Integrands . . . . . . .. . . 75 5.2.3 Squared Integrable Integrands . . . . . . . . . . 81 5.2.4 Properties of Stochastic Integrals . . .. . . . . . 84 5.3 Itô’s Lemma . . . . . . .. . . 85 5.3.1 Starting Point,Motivation and Some First Examples . . . . . . . . . . . . . 85 5.3.2 A Simplified Derivation of Itô’s Formula . . . . . . . . . . . . . . . . . . . . 88 5.4 An Application of Stochastic Calculus: the Black-ScholesModel . . . . . . . . . . 93 5.4.1 The Black-ScholesMarket . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.4.2 Self Financing Portfolios and Hedging in the Black-ScholesModel . . . . . 93 5.4.3 Probabilistic Interpretation of Black-Scholes Prices: Girsanov Theorem once more . . . .. . . 95 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明