| 所在主题: | |
| 文件名: Time Series for Macroeconomics and Finance.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-397789.html | |
| 附件大小: | |
|
Contents
1 Preface 7 2 What is a time series? 8 3 ARMAmodels 10 3.1 White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Basic ARMAmodels . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Lag operators and polynomials . . . . . . . . . . . . . . . . . 11 3.3.1 Manipulating ARMAs with lag operators. . . . . . . . 12 3.3.2 AR(1) to MA(∞) by recursive substitution . . . . . . . 13 3.3.3 AR(1) to MA(∞) with lag operators. . . . . . . . . . . 13 3.3.4 AR(p) to MA(∞), MA(q) to AR(∞), factoring lag polynomials, and partial fractions . . . . . . . . . . . . 14 3.3.5 Summary of allowed lag polynomial manipulations . . 16 3.4 Multivariate ARMAmodels. . . . . . . . . . . . . . . . . . . . 17 3.5 Problems and Tricks . . . . . . . . . . . . . . . . . . . . . . . 19 4 The autocorrelation and autocovariance functions. 21 4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Autocovariance and autocorrelation of ARMA processes. . . . 22 4.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 25 1 4.3 A fundamental representation . . . . . . . . . . . . . . . . . . 26 4.4 Admissible autocorrelation functions . . . . . . . . . . . . . . 27 4.5 Multivariate auto- and cross correlations. . . . . . . . . . . . . 30 5 Prediction and Impulse-Response Functions 31 5.1 Predicting ARMAmodels . . . . . . . . . . . . . . . . . . . . 32 5.2 State space representation . . . . . . . . . . . . . . . . . . . . 34 5.2.1 ARMAs in vector AR(1) representation . . . . . . . . 35 5.2.2 Forecasts fromvector AR(1) representation. . . . . . . 35 5.2.3 VARs in vector AR(1) representation. . . . . . . . . . . 36 5.3 Impulse-response function . . . . . . . . . . . . . . . . . . . . 37 5.3.1 Facts about impulse-responses . . . . . . . . . . . . . . 38 6 Stationarity and Wold representation 40 6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.2 Conditions for stationary ARMA’s . . . . . . . . . . . . . . . 41 6.3 Wold Decomposition theorem . . . . . . . . . . . . . . . . . . 43 6.3.1 What theWold theoremdoes not say . . . . . . . . . . 45 6.4 The Wold MA(∞) as another fundamental representation . . . 46 7 VARs: orthogonalization, variance decomposition, Granger causality 48 7.1 Orthogonalizing VARs . . . . . . . . . . . . . . . . . . . . . . 48 7.1.1 Ambiguity of impulse-response functions . . . . . . . . 48 7.1.2 Orthogonal shocks . . . . . . . . . . . . . . . . . . . . 49 7.1.3 Sims orthogonalization–Specifying C(0) . . . . . . . . 50 7.1.4 Blanchard-Quah orthogonalization—restrictions on C(1). 52 7.2 Variance decompositions . . . . . . . . . . . . . . . . . . . . . 53 7.3 VAR’s in state space notation . . . . . . . . . . . . . . . . . . 54 2 7.4 Tricks and problems: . . . . . . . . . . . . . . . . . . . . . . . 55 7.5 Granger Causality . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.5.1 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.5.2 Definition, autoregressive representation . . . . . . . . 58 7.5.3 Moving average representation . . . . . . . . . . . . . . 59 7.5.4 Univariate representations . . . . . . . . . . . . . . . . 60 7.5.5 Effect on projections . . . . . . . . . . . . . . . . . . . 61 7.5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.5.8 A warning: why “Granger causality” is not “Causality” 64 7.5.9 Contemporaneous correlation . . . . . . . . . . . . . . 65 8 SpectralRepresentation 67 8.1 Facts about complex numbers and trigonometry . . . . . . . . 67 8.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.1.2 Addition,multiplication, and conjugation . . . . . . . . 68 8.1.3 Trigonometric identities . . . . . . . . . . . . . . . . . 69 8.1.4 Frequency, period and phase . . . . . . . . . . . . . . . 69 8.1.5 Fourier transforms . . . . . . . . . . . . . . . . . . . . 70 8.1.6 Why complex numbers? . . . . . . . . . . . . . . . . . 72 8.2 Spectral density . . . . . . . . . . . . . . . . . . . . . . . . . . 73 8.2.1 Spectral densities of some processes . . . . . . . . . . . 75 8.2.2 Spectral densitymatrix, cross spectral density . . . . . 75 8.2.3 Spectral density of a sum. . . . . . . . . . . . . . . . . 77 8.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 8.3.1 Spectrum of filtered series . . . . . . . . . . . . . . . . 78 8.3.2 Multivariate filtering formula . . . . . . . . . . . . . . 79 3 8.3.3 Spectral density of arbitrary MA(∞) . . . . . . . . . . 80 8.3.4 Filtering and OLS . . . . . . . . . . . . . . . . . . . . 80 8.3.5 A cosine example . . . . . . . . . . . . . . . . . . . . . 82 8.3.6 Cross spectral density of two filters, and an interpretation of spectral density . . . . . . . . . . . . . . . . . 82 8.3.7 Constructing filters . . . . . . . . . . . . . . . . . . . . 84 8.3.8 Sims approximation formula . . . . . . . . . . . . . . . 86 8.4 Relation between Spectral, Wold, and Autocovariance representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 9 Spectral analysis infinite samples 89 9.1 Finite Fourier transforms . . . . . . . . . . . . . . . . . . . . . 89 9.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 89 9.2 Band spectrumregression . . . . . . . . . . . . . . . . . . . . 90 9.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 90 9.2.2 Band spectrumprocedure . . . . . . . . . . . . . . . . 93 9.3 Cram´er or Spectral representation . . . . . . . . . . . . . . . . 96 9.4 Estimating spectral densities . . . . . . . . . . . . . . . . . . . 98 9.4.1 Fourier transformsample covariances . . . . . . . . . . 98 9.4.2 Sample spectral density . . . . . . . . . . . . . . . . . 98 9.4.3 Relation between transformed autocovariances and sample density . . . . . . . . . . . . . . . . . . . . . . . . . 99 9.4.4 Asymptotic distribution of sample spectral density . . 101 9.4.5 Smoothed periodogramestimates . . . . . . . . . . . . 101 9.4.6 Weighted covariance estimates . . . . . . . . . . . . . . 102 9.4.7 Relation between weighted covariance and smoothed periodogramestimates . . . . . . . . . . . . . . . . . . 103 9.4.8 Variance of filtered data estimates . . . . . . . . . . . . 104 4 9.4.9 Spectral density implied by ARMAmodels . . . . . . . 105 9.4.10 Asymptotic distribution of spectral estimates . . . . . . 105 10 Unit Roots 106 10.1 RandomWalks . . . . . . . . . . . . . . . . . . . . . . . . . . 106 10.2 Motivations for unit roots . . . . . . . . . . . . . . . . . . . . 107 10.2.1 Stochastic trends . . . . . . . . . . . . . . . . . . . . . 107 10.2.2 Permanence of shocks . . . . . . . . . . . . . . . . . . . 108 10.2.3 Statistical issues . . . . . . . . . . . . . . . . . . . . . . 108 10.3 Unit root and stationary processes . . . . . . . . . . . . . . . 110 10.3.1 Response to shocks . . . . . . . . . . . . . . . . . . . . 111 10.3.2 Spectral density . . . . . . . . . . . . . . . . . . . . . . 113 10.3.3 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . 114 10.3.4 Randomwalk components and stochastic trends . . . . 115 10.3.5 Forecast error variances . . . . . . . . . . . . . . . . . 118 10.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.4 Summary of a(1) estimates and tests. . . . . . . . . . . . . . . 119 10.4.1 Near- observational equivalence of unit roots and stationary processes in finite samples . . . . . . . . . . . . 119 10.4.2 Empirical work on unit roots/persistence . . . . . . . . 121 11 Cointegration 122 11.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 11.2 Cointegrating regressions . . . . . . . . . . . . . . . . . . . . . 123 11.3 Representation of cointegrated system. . . . . . . . . . . . . . 124 11.3.1 Definition of cointegration . . . . . . . . . . . . . . . . 124 11.3.2 Multivariate Beveridge-Nelson decomposition . . . . . 125 11.3.3 Rank condition on A(1) . . . . . . . . . . . . . . . . . 125 5 11.3.4 Spectral density at zero . . . . . . . . . . . . . . . . . 126 11.3.5 Common trends representation . . . . . . . . . . . . . 126 11.3.6 Impulse-response function. . . . . . . . . . . . . . . . . 128 11.4 Useful representations for running cointegrated VAR’s . . . . . 129 11.4.1 Autoregressive Representations . . . . . . . . . . . . . 129 11.4.2 Error Correction representation . . . . . . . . . . . . . 130 11.4.3 Running VAR’s . . . . . . . . . . . . . . . . . . . . . . 131 11.5 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 11.6 Cointegration with drifts and trends . . . . . . . . . . . . . . |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明