| 所在主题: | |
| 文件名: pdf文本和代码 | |
| 资料下载链接地址: https://bbs.pinggu.org/a-4099790.html | |
| 附件大小: | |
|
我在网上看到这套书很不错,所以就抱着的把书籍介绍过来。
附件是pdf文本和代码 书籍的购买链接也放页末了。 本PDF 文件是作者草稿,发布目的为方便大家在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 本书配套微课视频均发布在B 站——生姜DrGinger:https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱:jiang.visualize.ml@gmail.com 这是一套前所未见的数学书,更是一套具备极高颜值的书。姜伟生博士是国际著名金融企业的金融科技专家。很难想象一位以“术数”为业的金融家具备如此彻底的分享动机,同时,姜博士有着卓越的艺术品位和设计能力,不仅承担了这套书的精深内容,更承担了全系图书的整体设计。希望读者从枯燥的常规数学书中解脱出来,赏心悦目地慢慢走入缤纷的数学宇宙。 内容简介 数据科学和机器学习已经深度融合到我们生活的方方面面,而数学正是开启未来大门的钥匙。不是所 有人生来都握有一副好牌,但是掌握“数学 + 编程 + 机器学习”绝对是王牌。这次,学习数学不再是为了考试、分数、升学,而是投资时间、自我实现、面向未来。为了让大家学数学、用数学,甚至爱上数学, 在创作这套书时,作者尽量克服传统数学教材的各种弊端,让大家学习时有兴趣、看得懂、有思考、更自信、用得着。 《数学要素:全彩图解 + 微课 + Python编程》打破数学板块的藩篱,将算数、代数、线性代数、几何、解析几何、概率统计、微积分、优化方法等板块有机结合在一起。从加、减、乘、除四则运算讲起,主要内容包括:第 1、2 章讲解向量和矩阵的基本运算;第 3 章讲解常用几何知识;第 4 章讲解代数知识;第 5、6 两章介绍坐标系;第 7、8、9 三章介绍解析几何;第 10 章到第 14 章都是围绕函数展开;第 15 章到第 19 章讲解微积分以及优化问题内容;第20、21 两章是概率统计入门;《数学要素:全彩图解 + 微课 + Python编程》最后四章以线性代数收尾。 《数学要素:全彩图解 + 微课 + Python编程》内容编排上突出“图解 + 编程 + 机器学习应用”。讲解一些特定数学工具时,《数学要素:全彩图解 + 微课 + Python编程》会穿插介绍其在数据科学和机器学习领域应用场景,让大家学以致用。 《数学要素:全彩图解 + 微课 + Python编程》虽标榜“从加减乘除到机器学习”,但是建议读者至少具备高中数学知识。如果读者正在学习或曾经学过大学数学 ( 微积分、线性代数、概率统计 ),就更容易读了。 JD购书链接 https://item.jd.com/13716507.html |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明