| 所在主题: | |
| 文件名: 详细目录文件清单.doc | |
| 资料下载链接地址: https://bbs.pinggu.org/a-4193116.html | |
| 附件大小: | |
|
python气象自动绘图函数设计思想与使用方法
map 教程1 库包 我的论文 相关论文 Auto_paint_self.py Python机器学习原理及在气象中的应用.pptx Python气象自动绘图函数引导.txt python气象自动绘图说明.txt python入门.pptx 下面是详细目录文件清单: 名称 +D:\ \python气象自动绘图函数设计思想与使用方法\ +map | bou2_4l.dbf | bou2_4l.shp | bou2_4l.shx | bou2_4p.dbf | bou2_4p.shp | bou2_4p.shx | country1.dbf | country1.shp | country1.shx | MeteoInfo_csharp_1.1.3.5R1.zip | province.CPG | province.dbf | province.prj | province.sbn | province.sbx | province.shp | province.shx | province.xml.xml | stations_lat_lon.xlsx | tibet_new.dbf | tibet_new.prj | tibet_new.sbn | tibet_new.sbx | tibet_new.shp | tibet_new.shx | tibet_new.xml.xml | world_adm0_Project.dbf | world_adm0_Project.prj | world_adm0_Project.sbn | world_adm0_Project.sbx | world_adm0_Project.shp | world_adm0_Project.shp.xml | world_adm0_Project.shx +教程1 |+.ipynb_checkpoints | | Auto_adaboost_Bayesian_Optimization-checkpoint.ipynb | | Auto_adaboost_chose-checkpoint.ipynb | | Auto_adaboost-checkpoint.ipynb | | Auto_ANN_chose-checkpoint.ipynb | | Auto_ANN_pytorch-checkpoint.ipynb | | Auto_ANN-checkpoint.ipynb | | Auto_any_vertical-checkpoint.ipynb | | Auto_blocking_high-checkpoint.ipynb | | Auto_catboost_Bayesian_Optimization-checkpoint.ipynb | | Auto_catboost_chose-checkpoint.ipynb | | Auto_catboost-checkpoint.ipynb | | Auto_cdf_matching-checkpoint.ipynb | | Auto_chose_data-checkpoint.ipynb | | Auto_CNN_chose-checkpoint.ipynb | | Auto_CNN_LSTMorGRUorRNN_chose-checkpoint.ipynb | | Auto_CNN_LSTMorGRUorRNN_more_output-checkpoint.ipynb | | Auto_CNN_LSTMorGRUorRNN_pytorch-checkpoint.ipynb | | Auto_CNN_LSTMorGRUorRNN-checkpoint.ipynb | | Auto_CNN_pytorch-checkpoint.ipynb | | Auto_CNN_TCN_chose-checkpoint.ipynb | | Auto_CNN_TCN_more_output-checkpoint.ipynb | | Auto_CNN_TCN_pytorch-checkpoint.ipynb | | Auto_CNN_TCN-checkpoint.ipynb | | Auto_CNN_Transformer_chose-checkpoint.ipynb | | Auto_CNN_Transformer_more_output-checkpoint.ipynb | | Auto_CNN_Transformer_pytorch-checkpoint.ipynb | | Auto_CNN_Transformer-checkpoint.ipynb | | Auto_CNN-checkpoint.ipynb | | Auto_create_gif-checkpoint.ipynb | | Auto_draw_taylor-checkpoint.ipynb | | Auto_EfficientTemp_ESR_GAN_pytorch-checkpoint.ipynb | | Auto_EfficientTemp_ESR_GAN-checkpoint.ipynb | | Auto_EfficientTemp_MSG_SE_Densenet_GAN-checkpoint.ipynb | | Auto_EfficientTempNet_pytorch-checkpoint.ipynb | | Auto_EfficientTempNet-checkpoint.ipynb | | Auto_EfficientTempt_MSG_SE_Densenet_GAN_pytorch-checkpoint.ipynb | | Auto_EMD-checkpoint.ipynb | | Auto_eof-checkpoint.ipynb | | Auto_ESR_EfficientTemp_GAN_pytorch-checkpoint.ipynb | | Auto_ESR_EfficientTemp_GAN-checkpoint.ipynb | | Auto_ESRGAN_pytorch-checkpoint.ipynb | | Auto_ESRGAN-checkpoint.ipynb | | Auto_GCN-checkpoint.ipynb | | Auto_heatwave-checkpoint.ipynb | | Auto_IBTrACS_read-checkpoint.ipynb | | Auto_imageline_to_data-checkpoint.ipynb | | Auto_Liang_Kleeman_information_flow-checkpoint.ipynb | | Auto_Liang_Kleeman_relative_flow-checkpoint.ipynb | | Auto_lightgbm_Bayesian_Optimization-checkpoint.ipynb | | Auto_lightgbm_chose-checkpoint.ipynb | | Auto_lightgbm-checkpoint.ipynb | | Auto_linregress-checkpoint.ipynb | | Auto_LSTMorGRUorRNN_chose-checkpoint.ipynb | | Auto_LSTMorGRUorRNN_more_output-checkpoint.ipynb | | Auto_LSTMorGRUorRNN_pytorch-checkpoint.ipynb | | Auto_LSTMorGRUorRNN-checkpoint.ipynb | | Auto_more_gaussianprocessregressor-checkpoint.ipynb | | Auto_more_lassoregress-checkpoint.ipynb | | Auto_more_linregress-checkpoint.ipynb | | Auto_more_ridgeregress-checkpoint.ipynb | | Auto_MSG_SE_Densenet_EfficientTemp_GAN-checkpoint.ipynb | | Auto_MSG_SE_Densenet_EfficientTempt_GAN_pytorch-checkpoint.ipynb | | Auto_MSG_SE_Densenet_GAN_pytorch-checkpoint.ipynb | | Auto_MSG_SE_Densenet_GAN-checkpoint.ipynb | | Auto_Multi_Scale_CNN_LSTMorGRUorRNN_more_output-checkpoint.ipynb | | Auto_Multi_Scale_CNN_LSTMorGRUorRNN_pytorch-checkpoint.ipynb | | Auto_Multi_Scale_CNN_LSTMorGRUorRNN-checkpoint.ipynb | | Auto_Multi_Scale_CNN_pytorch-checkpoint.ipynb | | Auto_Multi_Scale_CNN_TCN_more_output-checkpoint.ipynb | | Auto_Multi_Scale_CNN_TCN_pytorch-checkpoint.ipynb | | Auto_Multi_Scale_CNN_TCN-checkpoint.ipynb | | Auto_Multi_Scale_CNN_Transformer_more_output-checkpoint.ipynb | | Auto_Multi_Scale_CNN_Transformer_pytorch-checkpoint.ipynb | | Auto_Multi_Scale_CNN_Transformer-checkpoint.ipynb | | Auto_Multi_Scale_CNN-checkpoint.ipynb | | Auto_Multi_Scale_Resnet_LSTMorGRUorRNN_more_output-checkpoint.ipynb | | Auto_Multi_Scale_Resnet_LSTMorGRUorRNN_pytorch-checkpoint.ipynb | | Auto_Multi_Scale_Resnet_LSTMorGRUorRNN-checkpoint.ipynb | | Auto_Multi_Scale_Resnet_pytorch-checkpoint.ipynb | | Auto_Multi_Scale_Resnet_TCN_more_output-checkpoint.ipynb | | Auto_Multi_Scale_Resnet_TCN_pytorch-checkpoint.ipynb | | Auto_Multi_Scale_Resnet_TCN-checkpoint.ipynb | | Auto_Multi_Scale_Resnet_Transformer_more_output-checkpoint.ipynb | | Auto_Multi_Scale_Resnet_Transformer_pytorch-checkpoint.ipynb | | Auto_Multi_Scale_Resnet_Transformer-checkpoint.ipynb | | Auto_Multi_Scale_Resnet-checkpoint.ipynb | | Auto_ngboost_Bayesian_Optimization-checkpoint.ipynb | | Auto_ngboost_chose-checkpoint.ipynb | | Auto_ngboost-checkpoint.ipynb | | Auto_optical_flow-checkpoint.ipynb | | Auto_partical_r-checkpoint.ipynb | | Auto_Plumb-checkpoint.ipynb 。。。。。。。。。。。。。。。内容太很,贴子字数九 限制!# | | DBSCAN_eval-checkpoint.ipynb | | deal_data_time-checkpoint.ipynb | | K_means_eval-checkpoint.ipynb | | open_data_grib-checkpoint.ipynb | | open_data_nc-checkpoint.ipynb | | open_data_txt_grid-checkpoint.ipynb | | open_data_txt_station-checkpoint.ipynb | | open_hdf-checkpoint.ipynb | | selftime-checkpoint.ipynb | | specx_anal-checkpoint.ipynb | Auto_adaboost.ipynb | Auto_adaboost_Bayesian_Optimization.ipynb | Auto_adaboost_chose.ipynb | Auto_ANN.ipynb | Auto_ANN_chose.ipynb | Auto_ANN_pytorch.ipynb | Auto_any_vertical.ipynb | Auto_blocking_high.ipynb | Auto_catboost.ipynb | Auto_catboost_Bayesian_Optimization.ipynb | Auto_catboost_chose.ipynb | Auto_cdf_matching.ipynb | Auto_chose_data.ipynb | Auto_CNN.ipynb | Auto_CNN_chose.ipynb | Auto_CNN_LSTMorGRUorRNN.ipynb | Auto_CNN_LSTMorGRUorRNN_chose.ipynb | Auto_CNN_LSTMorGRUorRNN_more_output.ipynb | Auto_CNN_LSTMorGRUorRNN_pytorch.ipynb | Auto_CNN_pytorch.ipynb | Auto_CNN_TCN.ipynb | Auto_CNN_TCN_chose.ipynb | Auto_CNN_TCN_more_output.ipynb | Auto_CNN_TCN_pytorch.ipynb | Auto_CNN_Transformer.ipynb | Auto_CNN_Transformer_chose.ipynb | Auto_CNN_Transformer_more_output.ipynb | Auto_CNN_Transformer_pytorch.ipynb | Auto_create_gif.ipynb | Auto_draw_taylor.ipynb | Auto_EfficientTemp_ESR_GAN.ipynb | Auto_EfficientTemp_ESR_GAN_pytorch.ipynb | Auto_EfficientTemp_MSG_SE_Densenet_GAN.ipynb | Auto_EfficientTempNet.ipynb | Auto_EfficientTempNet_pytorch.ipynb | Auto_EfficientTempt_MSG_SE_Densenet_GAN_pytorch.ipynb | Auto_EMD.ipynb | Auto_eof.ipynb | Auto_ESR_EfficientTemp_GAN.ipynb | Auto_ESR_EfficientTemp_GAN_pytorch.ipynb | Auto_ESRGAN.ipynb | Auto_ESRGAN_pytorch.ipynb | Auto_GCN.ipynb | Auto_heatwave.ipynb | Auto_IBTrACS_read.ipynb | Auto_imageline_to_data.ipynb | Auto_Liang_Kleeman_information_flow.ipynb | Auto_Liang_Kleeman_relative_flow.ipynb | Auto_lightgbm.ipynb | Auto_lightgbm_Bayesian_Optimization.ipynb | Auto_lightgbm_chose.ipynb | Auto_linregress.ipynb | Auto_LSTMorGRUorRNN.ipynb | Auto_LSTMorGRUorRNN_chose.ipynb | Auto_LSTMorGRUorRNN_more_output.ipynb | Auto_LSTMorGRUorRNN_pytorch.ipynb | Auto_more_gaussianprocessregressor.ipynb | Auto_more_lassoregress.ipynb | Auto_more_linregress.ipynb | Auto_more_ridgeregress.ipynb | Auto_MSG_SE_Densenet_EfficientTemp_GAN.ipynb | Auto_MSG_SE_Densenet_EfficientTempt_GAN_pytorch.ipynb | Auto_MSG_SE_Densenet_GAN.ipynb | Auto_MSG_SE_Densenet_GAN_pytorch.ipynb | Auto_Multi_Scale_CNN.ipynb | Auto_Multi_Scale_CNN_LSTMorGRUorRNN.ipynb | Auto_Multi_Scale_CNN_LSTMorGRUorRNN_more_output.ipynb | Auto_Multi_Scale_CNN_LSTMorGRUorRNN_pytorch.ipynb | Auto_Multi_Scale_CNN_pytorch.ipynb | Auto_Multi_Scale_CNN_TCN.ipynb | Auto_Multi_Scale_CNN_TCN_more_output.ipynb | Auto_Multi_Scale_CNN_TCN_pytorch.ipynb | Auto_Multi_Scale_CNN_Transformer.ipynb | Auto_Multi_Scale_CNN_Transformer_more_output.ipynb | Auto_Multi_Scale_CNN_Transformer_pytorch.ipynb | Auto_Multi_Scale_Resnet.ipynb | Auto_Multi_Scale_Resnet_LSTMorGRUorRNN.ipynb | Auto_Multi_Scale_Resnet_LSTMorGRUorRNN_more_output.ipynb | Auto_Multi_Scale_Resnet_LSTMorGRUorRNN_pytorch.ipynb | Auto_Multi_Scale_Resnet_pytorch.ipynb | Auto_Multi_Scale_Resnet_TCN.ipynb | Auto_Multi_Scale_Resnet_TCN_more_output.ipynb | Auto_Multi_Scale_Resnet_TCN_pytorch.ipynb | Auto_Multi_Scale_Resnet_Transformer.ipynb | Auto_Multi_Scale_Resnet_Transformer_more_output.ipynb | Auto_Multi_Scale_Resnet_Transformer_pytorch.ipynb | Auto_ngboost.ipynb | Auto_ngboost_Bayesian_Optimization.ipynb | Auto_ngboost_chose.ipynb | Auto_optical_flow.ipynb | Auto_partical_r.ipynb | Auto_Plumb.ipynb | Auto_r.ipynb | Auto_RandomForest.ipynb | Auto_RandomForest_Bayesian_Optimization.ipynb | Auto_RandomForest_chose.ipynb | Auto_region_data_mask.ipynb | Auto_Resnet.ipynb | Auto_Resnet_chose.ipynb | Auto_Resnet_LSTMorGRUorRNN.ipynb | Auto_Resnet_LSTMorGRUorRNN_chose.ipynb | Auto_Resnet_LSTMorGRUorRNN_more_output.ipynb | Auto_Resnet_LSTMorGRUorRNN_pytorch.ipynb | Auto_Resnet_pytorch.ipynb | Auto_Resnet_TCN.ipynb | Auto_Resnet_TCN_chose.ipynb | Auto_Resnet_TCN_more_output.ipynb | Auto_Resnet_TCN_pytorch.ipynb | Auto_Resnet_Transformer.ipynb | Auto_Resnet_Transformer_chose.ipynb | Auto_Resnet_Transformer_more_output.ipynb | Auto_Resnet_Transformer_pytorch.ipynb | Auto_smooth.ipynb | Auto_SOM.ipynb | Auto_SRGAN.ipynb | Auto_SRGAN_pytorch.ipynb | Auto_stepwise_regression.ipynb | Auto_sudden_drought.ipynb | Auto_SVD.ipynb | Auto_SVM.ipynb | Auto_SVM_Bayesian_Optimization.ipynb | Auto_SVM_chose.ipynb | Auto_T_N.ipynb | Auto_TC_compare.ipynb | Auto_TCN.ipynb | Auto_TCN_chose.ipynb | Auto_TCN_more_output.ipynb | Auto_TCN_pytorch.ipynb | Auto_test_of_abrupt_change.ipynb | Auto_Transformer.ipynb | Auto_Transformer_chose.ipynb | Auto_Transformer_more_output.ipynb | Auto_Transformer_pytorch.ipynb | Auto_triple_collocation.ipynb | Auto_TSNE.ipynb | Auto_Unet.ipynb | Auto_Unet_chose.ipynb | Auto_Unet_pytorch.ipynb | Auto_UZ_detect.ipynb | Auto_UZ_track.ipynb | Auto_violin.ipynb | Auto_wave.ipynb | Auto_windrose.ipynb | Auto_xgboost.ipynb | Auto_xgboost_Bayesian_Optimization.ipynb | Auto_xgboost_chose.ipynb | Autobar_or_line.ipynb | Autoshaded_quiver.ipynb | create_nc.ipynb | data_all.ipynb | DBSCAN_eval.ipynb | deal_data_time.ipynb | K_means_eval.ipynb | open_data_grib.ipynb | open_data_nc.ipynb | open_data_txt_grid.ipynb | open_data_txt_station.ipynb | open_hdf.ipynb | selftime.ipynb | specx_anal.ipynb +库包 | Buishand_U.py | lanczos.py | Little_wave.py | maskout_country.py | maskout_province.py | mktest.py | Move_t_test.py | Pettitt.py | regression_mode.py | SNHT.py | Taylor.py +我的论文 | 8-基于机器学习的长江流域夏季延伸期预报及土壤温湿度的可能贡献(答辩版本).pdf | 基于机器学习的中国夏季降水...期预报及土壤湿度的可能贡献_叶宇辰.pdf | 三作- Long-term hourly air quality data bridging of neighboring sites using automated machine learning A case study in the Greater Bay area of China.pdf +相关论文 | Fischer2010热浪定义.pdf | 两种不同的识别旱灾的方法。比较它们的优势和局限性.pdf | 骤旱定义初稿.docx Auto_paint_self.py Python机器学习原理及在气象中的应用.pptx Python气象自动绘图函数引导.txt python气象自动绘图说明.txt python入门.pptx 。。。。。。。。。。。。。。。内容太很,贴子字数九 限制!#到时候详细的内容,请参考下面的详细目录文件清单!! |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明