| 所在主题: | |
| 文件名: 随机金融学(英文版) - An Introduction in Discrete Time.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-438191.html | |
| 附件大小: | |
|
Contents
Preface to the second edition v Preface to the first edition vii I Mathematical finance in one period 1 1 Arbitrage theory 3 1.1 Assets, portfolios, and arbitrage opportunities . . . . . . . . . . . . . 3 1.2 Absence of arbitrage and martingale measures . . . . . . . . . . . . . 6 1.3 Derivative securities . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Complete market models . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5 Geometric characterization of arbitrage-free models . . . . . . . . . . 27 1.6 Contingent initial data . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 Preferences 44 2.1 Preference relations and their numerical representation . . . . . . . . 45 2.2 Von Neumann–Morgenstern representation . . . . . . . . . . . . . . . 51 2.3 Expected utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.4 Uniform preferences . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.5 Robust preferences on asset profiles . . . . . . . . . . . . . . . . . . 86 2.6 Probability measures with given marginals . . . . . . . . . . . . . . . 99 3 Optimality and equilibrium 108 3.1 Portfolio optimization and the absence of arbitrage . . . . . . . . . . 108 3.2 Exponential utility and relative entropy . . . . . . . . . . . . . . . . . 116 3.3 Optimal contingent claims . . . . . . . . . . . . . . . . . . . . . . . 125 3.4 Microeconomic equilibrium . . . . . . . . . . . . . . . . . . . . . . 137 4 Monetary measures of risk 152 4.1 Risk measures and their acceptance sets . . . . . . . . . . . . . . . . 153 4.2 Robust representation of convex risk measures . . . . . . . . . . . . . 161 4.3 Convex risk measures on L∞ . . . . . . . . . . . . . . . . . . . . . . 171 4.4 Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 4.5 Law-invariant risk measures . . . . . . . . . . . . . . . . . . . . . . 183 4.6 Concave distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 4.7 Comonotonic risk measures . . . . . . . . . . . . . . . . . . . . . . . 195 4.8 Measures of risk in a financial market . . . . . . . . . . . . . . . . . 203 4.9 Shortfall risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 x Contents II Dynamic hedging 221 5 Dynamic arbitrage theory 223 5.1 The multi-period market model . . . . . . . . . . . . . . . . . . . . . 223 5.2 Arbitrage opportunities and martingale measures . . . . . . . . . . . 227 5.3 European contingent claims . . . . . . . . . . . . . . . . . . . . . . . 234 5.4 Complete markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 5.5 The binomial model . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 5.6 Exotic derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 5.7 Convergence to the Black–Scholes price . . . . . . . . . . . . . . . . 259 6 American contingent claims 277 6.1 Hedging strategies for the seller . . . . . . . . . . . . . . . . . . . . 277 6.2 Stopping strategies for the buyer . . . . . . . . . . . . . . . . . . . . 282 6.3 Arbitrage-free prices . . . . . . . . . . . . . . . . . . . . . . . . . . 292 6.4 Stability under pasting . . . . . . . . . . . . . . . . . . . . . . . . . 297 6.5 Lower and upper Snell envelopes . . . . . . . . . . . . . . . . . . . . 300 7 Superhedging 308 7.1 P-supermartingales . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 7.2 Uniform Doob decomposition . . . . . . . . . . . . . . . . . . . . . 310 7.3 Superhedging of American and European claims . . . . . . . . . . . . 313 7.4 Superhedging with liquid options . . . . . . . . . . . . . . . . . . . . 322 8 Efficient hedging 333 8.1 Quantile hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 8.2 Hedging with minimal shortfall risk . . . . . . . . . . . . . . . . . . 339 9 Hedging under constraints 350 9.1 Absence of arbitrage opportunities . . . . . . . . . . . . . . . . . . . 350 9.2 Uniform Doob decomposition . . . . . . . . . . . . . . . . . . . . . 357 9.3 Upper Snell envelopes . . . . . . . . . . . . . . . . . . . . . . . . . 362 9.4 Superhedging and risk measures . . . . . . . . . . . . . . . . . . . . 369 10 Minimizing the hedging error 372 10.1 Local quadratic risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 10.2 Minimal martingale measures . . . . . . . . . . . . . . . . . . . . . . 382 10.3 Variance-optimal hedging . . . . . . . . . . . . . . . . . . . . . . . . 392 Appendix 399 A.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 A.2 Absolutely continuous probability measures . . . . . . . . . . . . . . 403 A.3 Quantile functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 A.4 The Neyman–Pearson lemma . . . . . . . . . . . . . . . . . . . . . . 414 Contents xi A.5 The essential supremum of a family of random variables . . . . . . . 417 A.6 Spaces of measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 A.7 Some functional analysis . . . . . . . . . . . . . . . . . . . . . . . . 428 Notes 433 Bibliography 439 List of symbols 449 Index 451 觉得好的朋友,请给加加人气哦!!!!! |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明