搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  Quantitative Analysis with Gauss.rar
资料下载链接地址: https://bbs.pinggu.org/a-473646.html
附件大小:
39.73 MB   举报本内容

在Gauss版转了很久,发现新手上路最大的问题就在于Gauss没有一本好的入门教材。

这是我在国外的大学网络课程中找到的一门用Gauss来进行数量分析的课程,用Gauss8.0,整门课程从Gauss的入门开始讲起,包含OLS、ML、GMM等方法,讲述了线性模型、ARMA等模型及检验,涉及蒙特卡罗实验。

我作为一个新手,认为这是我找到的最实用全面的资料。由于搜索和下载都比较费时,希望大家给点辛苦钱,课程的所有课件及Gauss code都发给大家。但是不会要大家很多钱,所以,免费送给大家课程配套使用的Gauss 8.0的软件。希望我们都能尽快入门!


Syllabus:

Session 1: Introduction to GAUSS 8.0

  • Installation of GAUSS (Light)
  • Installation of GAUSS Libraries
  • Explanation of the Command Windows
  • Basic Commands (Definition of matrices, logical operators, loops and if statements, random number generators, etc.)
  • Use of Libraries
  • Data Handling
  • Procedures
  • Global and Local Variables

Session 2: Descriptive Data Analysis

  • Introduction to Descriptive Statistics
  • Development of Procedures for Descriptive Data Analysis (e.g. skewness, kurtosis, normality tests, autocovariance and autocorrelation functions, kernel density estimation, etc.)
  • Application to Financial Data: Stylized Facts at Moderate and High Frequencies
  • Use of the Graphic Library: pgraph
    • Line graphs, Scatter plots, Histograms
    • (Partial) Autocorrelograms
    • window command
    • generation of eps files for LaTeX (epsfig command)

Session 3 & 4: Linear Regression Model

  • Introduction to the Multivariate Linear Regression Model
  • OLS Regression (by hand, ols command)
  • Programming of a Standard Regression Output
    • T- Test
    • P-Value
    • White and Newey West Variance-Covariance Matrices
    • Wald F-Test
  • Application to Wage Equations and Time Series Analysis (AR(p) models)

Session 5 & 6: Maximum Likelihood Estimation of ARMA(p,q) models

  • Introduction to Maximum Likelihood (ML) Estimation
  • Introduction to Linear Time Series Models
  • Numerical Optimization: optmum and maxlik libraries
  • Programming of the conditional likelihood for an ARMA(p,q) model
  • Application to the Dynamic Properties of High Frequent Financial Data
    • Estimation of Different ARMA(p,q) models for NYSE stocks series
    • Model Evaluation and Diagnostics making use of Session 2
    • Information Criteria

Session 7: Maximum Likelihood Estimation (Ordered) Probit & Logit Models

  • Introduction to Ordered Response Models
  • Programming of the Likelihood Function for an Ordered Probit/Logit Model
  • Application to the ZEW Financial Markets Surveys
    • Evaluation of the Forecasting Performance of Financial Experts
    • Forecasting Criteria


Session 8: Monte Carlo Study and Bootstrapping Techniques

  • Introduction to Asymptotics
  • Monte Carlo and Bootstrapping Techniques
  • Application to the Asymptotic Properties of OLS and ML Estimators

Session 9: Volatility Estimation 1 & Risk Measurement

  • Introduction to ARMA-GARCH Models
  • Introduction to Value-at-Risk (VaR) and Expected Shortfall
  • ML Estimation of ARMA-GARCH Models
    • Programming of the Conditional ARMA-GARCH Likelihood Function
    • Model Evaluation
    • Extension of the Program of Session 5 & 6
  • Application to Value-at-Risk and Expected Shortfall using Conditional Volatility Estimates
    • Computation of the conditional VaR and Expected Shortfalls for Short and Long positions
    • Back Testing


Session 10: Volatility Estimation 2 & Option Pricing

  • Introduction to Realized Volatility Estimation
  • Introduction to Option Pricing (Black-Scholes Formula)
  • Estimation of Volatility using High Frequency Financial Data
    • Realized Volatility
    • Volatility Signature Plots
  • Application to Option Pricing using Black-Scholes Formula
    • Computation of Realized Volatility Estimates for Stocks and Exchange Rates
    • Programming of Black-Scholes Formula


Session 11 & 12: Asset Pricing and GMM Estimation

  • Introduction to Asset Pricing and GMM Estimation a la Cochrane
  • Programming of the GMM Objective Function
  • Application to Asset Pricing
    • Stochastic Discount Factor Models
      (Consumption Based Model, CAPM Model, Fama-French Factor Models)
    • Model Evaluation




    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2025-12-27 01:41