| 所在主题: | |
| 文件名: Brownian Motion - Morters.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-571663.html | |
| 附件大小: | |
|
Brownian Motion
Peter Mörters and Yuval Peres with an appendix by Oded Schramm and Wendelin Werner Preface page viii Frequently used notation x Motivation 1 1 Brownian motion as a random function 7 1.1 Paul Lévy’s construction of Brownian motion 7 1.2 Continuity properties of Brownian motion 14 1.3 Nondifferentiability of Brownian motion 18 1.4 The Cameron–Martin theorem 24 Exercises 30 Notes and comments 33 2 Brownian motion as a strong Markov process 36 2.1 The Markov property and Blumenthal’s 0-1 law 36 2.2 The strong Markov property and the reflection principle 40 2.3 Markov processes derived from Brownian motion 48 2.4 The martingale property of Brownian motion 53 Exercises 59 Notes and comments 63 3 Harmonic functions, transience and recurrence 65 3.1 Harmonic functions and the Dirichlet problem 65 3.2 Recurrence and transience of Brownian motion 71 3.3 Occupation measures and Green’s functions 76 3.4 The harmonic measure 84 Exercises 91 Notes and comments 94 4 Hausdorff dimension: Techniques and applications 96 4.1 Minkowski and Hausdorff dimension 96 4.2 The mass distribution principle 105 4.3 The energy method 108 4.4 Frostman’s lemma and capacity 111 Exercises 115 Notes and comments 116 5 Brownian motion and random walk 118 5.1 The law of the iterated logarithm 118 5.2 Points of increase for random walk and Brownian motion 123 5.3 Skorokhod embedding and Donsker’s invariance principle 127 5.4 The arcsine laws for random walk and Brownian motion 135 5.5 Pitman’s 2M − B theorem 140 Exercises 146 Notes and comments 149 6 Brownian local time 153 6.1 The local time at zero 153 6.2 A random walk approach to the local time process 165 6.3 The Ray–Knight theorem 170 6.4 Brownian local time as a Hausdorff measure 178 Exercises 186 Notes and comments 187 7 Stochastic integrals and applications 190 7.1 Stochastic integrals with respect to Brownian motion 190 7.2 Conformal invariance and winding numbers 201 7.3 Tanaka’s formula and Brownian local time 209 7.4 Feynman–Kac formulas and applications 213 Exercises 220 Notes and comments 222 8 Potential theory of Brownian motion 224 8.1 The Dirichlet problem revisited 224 8.2 The equilibrium measure 227 8.3 Polar sets and capacities 234 8.4 Wiener’s test of regularity 248 Exercises 251 Notes and comments 253 9 Intersections and self-intersections of Brownian paths 255 9.1 Intersection of paths: Existence and Hausdorff dimension 255 9.2 Intersection equivalence of Brownian motion and percolation limit sets 263 9.3 Multiple points of Brownian paths 272 9.4 Kaufman’s dimension doubling theorem 279 Exercises 285 Notes and comments 287 10 Exceptional sets for Brownian motion 290 10.1 The fast times of Brownian motion 290 10.2 Packing dimension and limsup fractals 298 10.3 Slow times of Brownian motion 307 10.4 Cone points of planar Brownian motion 312 Exercises 322 Notes and comments 324 Appendix A: Further developments 11 Stochastic Loewner evolution and planar Brownian motion 327 by Oded Schramm and Wendelin Werner 11.1 Some subsets of planar Brownian paths 327 11.2 Paths of stochastic Loewner evolution 331 11.3 Special properties of SLE(6) 339 11.4 Exponents of stochastic Loewner evolution 340 Notes and comments 344 Appendix B: Background and prerequisites 346 12.1 Convergence of distributions 346 12.2 Gaussian random variables 349 12.3 Martingales in discrete time 351 12.4 Trees and flows on trees 358 Hints and solutions for selected exercises 361 Selected open problems 383 Bibliography 386 Index 400 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明