| 所在主题: | |
| 文件名: 李仲飞+经济动态规划 2.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-602322.html | |
| 附件大小: | |
|
教科书版本 目录 附件1
1 Introduction 9 1.1 Optimization Problems . . . . . . . . . . . . . . . . . . . . . . 9 1.1.1 Linear and Nonlinear Programming . . . . . . . . . . 10 1.1.2 Quadratic Programming . . . . . . . . . . . . . . . . . 11 1.1.3 Conic Optimization . . . . . . . . . . . . . . . . . . . 12 1.1.4 Integer Programming . . . . . . . . . . . . . . . . . . 12 1.1.5 Dynamic Programming . . . . . . . . . . . . . . . . . 13 1.2 Optimization with Data Uncertainty . . . . . . . . . . . . . . 13 1.2.1 Stochastic Programming . . . . . . . . . . . . . . . . . 13 1.2.2 Robust Optimization . . . . . . . . . . . . . . . . . . . 14 1.3 Financial Mathematics . . . . . . . . . . . . . . . . . . . . . . 16 1.3.1 Portfolio Selection and Asset Allocation . . . . . . . . 16 1.3.2 Pricing and Hedging of Options . . . . . . . . . . . . . 18 1.3.3 Risk Management . . . . . . . . . . . . . . . . . . . . 19 1.3.4 Asset/Liability Management . . . . . . . . . . . . . . 20 2 Linear Programming: Theory and Algorithms 23 2.1 The Linear Programming Problem . . . . . . . . . . . . . . . 23 2.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . 28 2.4 The Simplex Method . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.1 Basic Solutions . . . . . . . . . . . . . . . . . . . . . . 32 2.4.2 Simplex Iterations . . . . . . . . . . . . . . . . . . . . 35 2.4.3 The Tableau Form of the Simplex Method . . . . . . . 39 2.4.4 Graphical Interpretation . . . . . . . . . . . . . . . . . 42 2.4.5 The Dual Simplex Method . . . . . . . . . . . . . . . 43 2.4.6 Alternatives to the Simplex Method . . . . . . . . . . 45 3 LP Models: Asset/Liability Cash Flow Matching 47 3.1 Short Term Financing . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Solving the Model with SOLVER . . . . . . . . . . . . 50 3.1.3 Interpreting the output of SOLVER . . . . . . . . . . 53 3.1.4 Modeling Languages . . . . . . . . . . . . . . . . . . . 54 3.1.5 Features of Linear Programs . . . . . . . . . . . . . . 55 3.2 Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3 Sensitivity Analysis for Linear Programming . . . . . . . . . 5 3.3.1 Short Term Financing . . . . . . . . . . . . . . . . . . 58 3.3.2 Dedication . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 LP Models: Asset Pricing and Arbitrage 69 4.1 The Fundamental Theorem of Asset Pricing . . . . . . . . . . 69 4.1.1 Replication . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.2 Risk-Neutral Probabilities . . . . . . . . . . . . . . . . 72 4.1.3 The Fundamental Theorem of Asset Pricing . . . . . . 74 4.2 Arbitrage Detection Using Linear Programming . . . . . . . . 75 4.3 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 Case Study: Tax Clientele E ects in Bond Portfolio Manage- ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 Nonlinear Programming: Theory and Algorithms 85 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3 Univariate Optimization . . . . . . . . . . . . . . . . . . . . . 88 5.3.1 Binary search . . . . . . . . . . . . . . . . . . . . . . . 88 5.3.2 Newton's Method . . . . . . . . . . . . . . . . . . . . . 92 5.3.3 Approximate Line Search . . . . . . . . . . . . . . . . 95 5.4 Unconstrained Optimization . . . . . . . . . . . . . . . . . . . 97 5.4.1 Steepest Descent . . . . . . . . . . . . . . . . . . . . . 97 5.4.2 Newton's Method . . . . . . . . . . . . . . . . . . . . . 101 5.5 Constrained Optimization . . . . . . . . . . . . . . . . . . . . 104 5.5.1 The generalized reduced gradient method . . . . . . . 107 5.5.2 Sequential Quadratic Programming . . . . . . . . . . . 112 5.6 Nonsmooth Optimization: Subgradient Methods . . . . . . . 113 6 NLP Models: Volatility Estimation 115 6.1 Volatility Estimation with GARCH Models . . . . . . . . . . 115 6.2 Estimating a Volatility Surface . . . . . . . . . . . . . . . . . 119 7 Quadratic Programming: Theory and Algorithms 125 7.1 The Quadratic Programming Problem . . . . . . . . . . . . . 125 7.2 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . 126 7.3 Interior-Point Methods . . . . . . . . . . . . . . . . . . . . . . 128 7.4 The Central Path . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.5 Interior-Point Methods . . . . . . . . . . . . . . . . . . . . . . 132 7.5.1 Path-Following Algorithms . . . . . . . . . . . . . . . 132 7.5.2 Centered Newton directions . . . . . . . . . . . . . . . 133 7.5.3 Neighborhoods of the Central Path . . . . . . . . . . . 135 7.5.4 A Long-Step Path-Following Algorithm . . . . . . . . 138 7.5.5 Starting from an Infeasible Point . . . . . . . . . . . . 138 7.6 QP software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.7 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . 139 8 QP Models: Portfolio Optimization 141 8.1 Mean-Variance Optimization . . . . . . . . . . . . . . . . . . 141 8.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 143 8.1.2 Large-Scale Portfolio Optimization . . . . . . . . . . . 148 8.1.3 The Black-Litterman Model . . . . . . . . . . . . . . . 151 8.1.4 Mean-Absolute Deviation to Estimate Risk . . . . . . 155 8.2 Maximizing the Sharpe Ratio . . . . . . . . . . . . . . . . . . 158 8.3 Returns-Based Style Analysis . . . . . . . . . . . . . . . . . . 160 8.4 Recovering Risk-Neural Probabilities from Options Prices . . 162 8.5 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . 166 8.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 9 Conic Optimization Tools 171 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9.2 Second-order cone programming: . . . . . . . . . . . . . . . . 171 9.2.1 Ellipsoidal Uncertainty for Linear Constraints . . . . . 173 9.2.2 Conversion of quadratic constraints into second-order cone constraints . . . . . . . . . . . . . . . . . . . . . 175 9.3 Semide nite programming: . . . . . . . . . . . . . . . . . . . 176 9.3.1 Ellipsoidal Uncertainty for Quadratic Constraints . . . 178 9.4 Algorithms and Software . . . . . . . . . . . . . . . . . . . . . 179 10 Conic Optimization Models in Finance 181 10.1 Tracking Error and Volatility Constraints . . . . . . . . . . . 181 10.2 Approximating Covariance Matrices . . . . . . . . . . . . . . 184 10.3 Recovering Risk-Neural Probabilities from Options Prices . . 187 10.4 Arbitrage Bounds for Forward Start Options . . . . . . . . . 189 10.4.1 A Semi-Static Hedge . . . . . . . . . . . . . . . . . . . 190 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明