| 所在主题: | |
| 文件名: yplm.txt | |
| 资料下载链接地址: https://bbs.pinggu.org/a-778222.html | |
| 附件大小: | |
|
用R使用了如下命令:
> y <- rnorm(50) > x <- matrix(rnorm(100),50) > fit <- rq(y~x,tau = .4) Call: rq(formula = y ~ x, tau = 0.4) Coefficients: (Intercept) x1 x2 -0.382038260.093842160.09347414 Degrees of freedom: 50 total; 47 residual Call: rq(formula = y ~ x, tau = 0.4) tau: [1] 0.4 Coefficients: Value Std. Error t valuePr(>|t|) (Intercept) -0.382040.21700 -1.760560.08482 x1 0.093840.18203 0.515520.60861 x2 0.093470.24560 0.380590.70522 但是我现在想做的数据结构不是上面的一列数据格式(简称为截面),我现在想做面板(问一句,对于bootstrap,不同数据类型会不同吗,如面板数据和截面数据?),计算系数的程序已经 基本上有了,就是R中quantreg的rq.fit.sfn。但是这个程序只运行出coeff,而t值和p值都没有,所以我想用bootstrap计算(使用block bootstrap即可) 应该怎么实现? > summary.rq function (object, se = "nid", covariance = FALSE, hs = TRUE, ...) { if (object$method == "lasso") stop("no inference for lasso'd rq fitting: try rqss (if brave)") mt <- terms(object) m <- model.frame(object) y <- model.response(m) x <- model.matrix(mt, m, contrasts = object$contrasts) wt <- model.weights(object$model) tau <- object$tau eps <- .Machine$double.eps^(2/3) coef <- coefficients(object) if (is.matrix(coef)) coef <- coef[, 1] vnames <- dimnames(x)[[2]] resid <- object$residuals n <- length(resid) p <- length(coef) rdf <- n - p if (!is.null(wt)) { resid <- resid * wt x <- x * wt y <- y * wt } if (missing(se)) { if (n < 1001 & covariance == FALSE) se <- "rank" else se <- "nid" } if (se == "rank") { f <- rq.fit.br(x, y, tau = tau, ci = TRUE, ...) } if (se == "iid") { xxinv <- diag(p) xxinv <- backsolve(qr(x)$qr[1:p, 1:p, drop = FALSE], xxinv) xxinv <- xxinv %*% t(xxinv) pz <- sum(abs(resid) < eps) h <- max(p + 1, ceiling(n * bandwidth.rq(tau, n, hs = hs))) ir <- (pz + 1):(h + pz + 1) ord.resid <- sort(resid[order(abs(resid))][ir]) xt <- ir/(n - p) sparsity <- rq(ord.resid ~ xt)$coef[2] cov <- sparsity^2 * xxinv * tau * (1 - tau) scale <- 1/sparsity serr <- sqrt(diag(cov)) } else if (se == "nid") { h <- bandwidth.rq(tau, n, hs = hs) if (tau + h > 1) stop("tau + h > 1:error in summary.rq") if (tau - h < 0) stop("tau - h < 0:error in summary.rq") bhi <- rq.fit.fnb(x, y, tau = tau + h)$coef blo <- rq.fit.fnb(x, y, tau = tau - h)$coef dyhat <- x %*% (bhi - blo) if (any(dyhat <= 0)) warning(paste(sum(dyhat <= 0), "non-positive fis")) f <- pmax(0, (2 * h)/(dyhat - eps)) fxxinv <- diag(p) fxxinv <- backsolve(qr(sqrt(f) * x)$qr[1:p, 1:p, drop = FALSE], fxxinv) fxxinv <- fxxinv %*% t(fxxinv) cov <- tau * (1 - tau) * fxxinv %*% crossprod(x) %*% fxxinv scale <- mean(f) serr <- sqrt(diag(cov)) } else if (se == "ker") { h <- bandwidth.rq(tau, n, hs = hs) if (tau + h > 1) stop("tau + h > 1:error in summary.rq") if (tau - h < 0) stop("tau - h < 0:error in summary.rq") uhat <- c(y - x %*% coef) h <- (qnorm(tau + h) - qnorm(tau - h)) * min(sqrt(var(uhat)), (quantile(uhat, 0.75) - quantile(uhat, 0.25))/1.34) f <- dnorm(uhat/h)/h fxxinv <- diag(p) fxxinv <- backsolve(qr(sqrt(f) * x)$qr[1:p, 1:p, drop = FALSE], fxxinv) fxxinv <- fxxinv %*% t(fxxinv) cov <- tau * (1 - tau) * fxxinv %*% crossprod(x) %*% fxxinv scale <- mean(f) serr <- sqrt(diag(cov)) } else if (se == "boot") { B <- boot.rq(x, y, tau, ...) cov <- cov(B) serr <- sqrt(diag(cov)) } if (se == "rank") { coef <- f$coef } else { coef <- array(coef, c(p, 4)) dimnames(coef) <- list(vnames, c("Value", "Std. Error", "t value", "Pr(>|t|)")) coef[, 2] <- serr coef[, 3] <- coef[, 1]/coef[, 2] coef[, 4] <- if (rdf > 0) 2 * (1 - pt(abs(coef[, 3]), rdf)) else NA } object <- object[c("call", "terms")] if (covariance == TRUE) { object$cov <- cov if (se == "iid") object$scale <- scale if (se %in% c("nid", "ker")) { object$Hinv <- fxxinv object$J <- crossprod(x) object$scale <- scale } else if (se == "boot") { object$B <- B } } object$coefficients <- coef object$rdf <- rdf object$tau <- tau class(object) <- "summary.rq" object } |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明