| 所在主题: | |
| 文件名: Convex_Slides_2007_.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-779795.html | |
| 附件大小: | |
|
里面包括笔记 习题答案 和教材 还有勘误!
象征性的收一元金币吧.. 【内容简介】 本书主要作者Dimitri P. Bertsekas是美国麻省理工学院电气工程和计算机科学系的资深教授,他是“动态规划与随机控制”、“约束优化与Lagrange乘子方法”、“非线性规划”、“连续和离散模型的网络优化”、“离散时间随机最优控制”、“并行和分布计算中的数值方法”等十余部教科书的主要作者,这些教科书的大部分被用作麻省理工学院的研究生或本科生教材,本书就是其中之一。 阅读本书仅需要线性代数和数学分析的基本知识。通过学习本书,可以了解凸分析和优化领域的主要结果,掌握有关理论的本质内容,提高分析和解决最优化问题的能力。因此,所有涉足最优化与系统分析领域的理论研究人员和实际工作者均可从学习或阅读本书中获得益处。此外,本书也可用作高年级大学生或研究生学习凸分析方法和最优化理论的教材或辅助材料。 目录1. Basic Convexity Concepts . 1.1. Linear Algebra and Real Analysis 1.1.1. Vcctors and Matrices 1.1.2. Topological Properties 1.1.3. Square Matrices 1.1.4. Derivatives 1.2. Convex Sets and Functions 1.3. Convex and Affine Hulls 1.4. Relative Interior, Closure, and Continuity 1.5. Recession Cones 1.5.1. Nonemptiness of Intersections of Closed Sets 1.5.2. Closedness Under Linear Transformations 1.6. Notes, Sources, and Exercises 2. Convexity and Optimization 2.1. Global and Local Minima 2.2. The Projection Theorem 2.3. Directions of Recession and Existence of Optimal Solutions 2.3.1. Existence of Solutions of Convex Programs 2.3.2. Unbounded Optimal Solution Sets 2.3.3. Partial Minimization of Convex Functions .2.4. Hyperplanes 2.5. An Elementary Form of Duality 2.5.1. Nonvertical Hyperplanes 2.5.2. Min Common/Max Crossing Duality 2.6. Saddle Point and Minimax Theory 2.6.1. Min Common/Max Crossing Framework for Minimax 2.6.2. Minimax Theorems 2.6.3. Saddle Point Theorems 2.7. Notes, Sources, and Exercises 3. Polyhedral Convexity 3.1. Polar Cones 3.2. Polyhedral Cones and Polyhedral Sets 3.2.1. Farkas' Lemma and Minkowski-Weyl Theorem 3.2.2. Polyhedral Sets 3.2.3. Polyhedral Functions 3.3. Extreme Points 3.3.1. Extreme Points of Polyhedral Sets 3.4. Polyhedral Aspects of Optimization 3.4.1. Linear Programming 3.4.2. Integer Programming 3.5. Polyhedral Aspects of Duality 3.5.1. Polyhedral Proper Separation 3.5.2. Min Common/Max Crossing Duality 3.5.3. Minimax Theory Under Polyhcdral Assumptions 3.5.4. A Nonlinear Version of Farkas' Lemma 3.5.5. Convex Programming 3.6. Notes, Sources, and Exercises 4. Subgradients and Constrained Optimization .. 4.1. Directional Derivatives 4.2. Subgradicnts and Subdifferentials 4.3. e-Subgradients 4.4. Subgradients of Extended Real-Valued Functions 4.5. Directional Derivative of the Max Function 4.6. Conical Approximations 4.7. Optimality Conditions 4.8. Notes, Sources, and Exercises 5. Lagrange Multipliers 5.1. Introduction to Lagrange Multipliers 5.2. Enhanced Fritz John Optimality Conditions 5.3. Informative Lagrange Multipliers 5.3.1. Sensitivity 5.3.2. Alternative Lagrange Multipliers 5.4. Pseudonormality and Constraint Qualifications 5.5. Exact Penalty Functions 5.6. Using the Extended Representation 5.7. Extensions Under Convexity Assumptions 5.8. Notes, Sources, and Exercises 6. Lagrangian Duality 6.1. Geometric Multipliers 6.2. Duality Theory 6.3. Linear and Quadratic Programming Duality 6.4. Existence of Geometric Multipliers 6.4.1. Convex Cost Linear Constraints 6.4.2. Convex Cost - Convex Constraints 6.5. Strong Duality and the Primal Function 6.5.1. Duality Gap and the Primal Function 6.5.2. Conditions for No Duality Gap 6.5.3. Subgradients of the Primal Function 6.5.4. Sensitivity Analysis 6.6. Fritz John Conditions when there is no Optimal Solution 6.6.1. Enhanced Fritz John Conditions 6.6.2. Informative Geometric Multipliers 6.7. Notes, Sources, and Exercises 7. Conjugate Duality 7.1. Conjugate Functions 7.2. Fenchel Duality Theorems 7.2.1. Connection of Fenchel Duality and Minimax Theory 7.2.2. Conic Duality 7.3. Exact Penalty Functions 7.4. Notes, Sources, and Exercises 8. Dual Computational Methods 8.1. Dual Derivatives and Subgradients 8.2. Subgradient Methods 8.2.1. Analysis of Subgradient Methods 8.2.2. Subgradient Methods with Randomization 8.3. Cutting Plane Methods 8.4. Ascent Methods 8.5. Notes, Sources, and Exercises References Index ... |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明