| 所在主题: | |
| 文件名: Convex Functional Analysis (Andrew+J.+Kurdila+2005).pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-810245.html | |
| 附件大小: | |
|
Contents
Preface ...................................... xi 1 Classical Abstract Spaces in Functional Analysis 1.1 IntroductionandNotation....................... 1 1.2 TopologicalSpaces........................... 5 1.2.1 ConvergenceinTopologicalSpaces.............. 13 1.2.2 Continuity of Functions on Topological Spaces . . . . . . . 15 1.2.3 Weak Topology . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2.4 Compactness of Sets in Topological Spaces . . . . . . . . . 19 1.3 MetricSpaces.............................. 21 1.3.1 Convergence and Continuity in Metric Spaces . . . . . . . . 21 1.3.2 Closed and Dense Sets in Metric Spaces . . . . . . . . . . . 23 1.3.3 CompleteMetricSpaces.................... 23 1.3.4 TheBaireCategoryTheorem................. 25 1.3.5 CompactnessofSetsinMetricSpaces ............ 27 1.3.6 Equicontinuous Functions on Metric Spaces . . . . . . . . . 30 1.3.7 TheArzela-AscoliTheorem.................. 33 1.3.8 H¨older’s and Minkowski’s Inequalities . . . . . . . . . . . . 35 1.4 VectorSpaces.............................. 41 1.5 NormedVectorSpaces......................... 45 1.5.1 BasicDefinitions........................ 45 1.5.2 ExamplesofNormedVectorSpaces ............. 46 1.6 Space of Lebesgue Measurable Functions . . . . . . . . . . . . . . . 52 1.6.1 IntroductiontoMeasureTheory ............... 52 1.6.2 LebesgueIntegral........................ 54 1.6.3 MeasurableFunctions ..................... 57 1.7 HilbertSpaces ............................. 58 2 Linear Functionals and Linear Operators 2.1 Fundamental Theorems of Analysis . . . . . . . . . . . . . . . . . . 65 2.1.1 Hahn-BanachTheorem .................... 65 2.1.2 Uniform Boundedness Theorem . . . . . . . . . . . . . . . . 69 2.1.3 TheOpenMappingTheorem................. 71 2.2 DualSpaces............................... 75 2.3 TheWeakTopology .......................... 79 2.4 The Weak* Topology.......................... 80 2.5 SignedMeasuresandTopology .................... 88 2.6 Riesz’sRepresentationTheorem.................... 91 2.6.1 Space of Lebesgue Measurable Functions . . . . . . . . . . . 91 2.6.2 HilbertSpaces ......................... 94 2.7 ClosedOperatorsonHilbertSpaces ................. 95 2.8 AdjointOperators ........................... 97 2.9 GelfandTriples............................. 103 2.10 Bilinear Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3 Common Function Spaces in Applications p 3.1 The L Spaces ............................. 111 3.2 SobolevSpaces ............................. 113 3.2.1 DistributionalDerivatives................... 114 3.2.2 Sobolev Spaces, Integer Order . . . . . . . . . . . . . . . . . 117 3.2.3 Sobolev Spaces, Fractional Order . . . . . . . . . . . . . . . 118 3.2.4 TraceTheorems ........................ 122 3.2.5 The Poincar′eInequality.................... 123 3.3 Banach Space Valued Functions . . . . . . . . . . . . . . . . . . . . 126 3.3.1 BochnerIntegrals........................ 126 p 3.3.2 The Space L (0,T),X .................... 131 p,q 3.3.3 The Space W (0,T),X .................. 133 4 Di?erential Calculus in Normed Vector Spaces 4.1 Di?erentiability of Functionals . . . . . . . . . . . . . . . . . . . . 137 4.1.1 Gateaux Di?erentiability . . . . . . . . . . . . . . . . . . . 137 4.1.2 Fr′echet Di?erentiability . . . . . . . . . . . . . . . . . . . . 139 4.2 Classical Examples of Di?erentiable Operators . . . . . . . . . . . 143 5 Minimization of Functionals 5.1 TheWeierstrassTheorem ....................... 161 5.2 ElementaryCalculus.......................... 163 5.3 Minimization of Di?erentiable Functionals . . . . . . . . . . . . . . 165 5.4 EqualityConstrainedSmoothFunctionals.............. 166 5.5 Fr′echetDi?erentiableImplicitFunctionals.............. 171 6 Convex Functionals 6.1 CharacterizationofConvexity..................... 177 6.2 Gateaux Di?erentiable Convex Functionals . . . . . . . . . . . . . 180 n 6.3 Convex Programming in R ...................... 183 6.4 OrderedVectorSpaces......................... 188 6.4.1 Positive Cones, Negative Cones, and Orderings . . . . . . . 189 6.4.2 OrderingsonSobolevSpaces ................. 191 6.5 Convex Programming in Ordered Vector Spaces . . . . . . . . . . . 193 6.6 Gateaux Di?erentiable Functionals on Ordered Vector Spaces . . . 199 Lower Semicontinuous Functionals 7.1 CharacterizationofLowerSemicontinuity .............. 205 7.2 Lower Semicontinuous Functionals and Convexity . . . . . . . . . . 208 7.2.1 Banach Theorem for Lower Semicontinuous Functionals . . 208 7.2.2 Gateaux Di?erentiability . . . . . . . . . . . . . . . . . . . 210 7.2.3 Lower Semicontinuity in Weak Topologies . . . . . . . . . . 210 7.3 TheGeneralizedWeierstrassTheorem ................ 212 7.3.1 CompactnessinWeakTopologies............... 213 7.3.2 Bounded Constraint Sets . . . . . . . . . . . . . . . . . . . 215 7.3.3 Unbounded Constraint Sets . . . . . . . . . . . . . . . . . . 215 7.3.4 ConstraintSetsonOrderedVectorSpaces.......... 217 eferences .................................... 221 ndex ....................................... 223 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明