| 所在主题: | |
| 文件名: Signature Methods in Finance An Introduction with Computational Applications.epub | |
| 资料下载链接地址: https://bbs.pinggu.org/a-8786209.html | |
| 附件大小: | |
|
内容特别丰富,450多页的大型资料包! 内容最新,2026才上线的资料! epub格式,全部矢量文字,方便翻译! The first three chapters provide an accessible introduction to signatures with a view towards applications in machine learning and statistics, suitable for readers at the level of a master student in mathematics. The chapters in the second part assume knowledge on the signature as contained in the first three chapters. They are otherwise self-contained and can be read independently from each other. Only the second half of the book focuses on mathematical finance applications. The resource is structured as follows: On PartI: Introduction to Signatures in Machine Learning Part I provides a general introduction to signatures and their use in machine learning. Part II presents various applications of signature methods in finance. We provide an introduction to the signature method, focusing on its theoretical properties and machine learning applications. Our presentation is divided into two parts. In the first part, we present the definition and fundamental properties of the signature of a path. The signature is a sequence of numbers associated with a path that captures many of its important analytic and geometric properties. As a sequence of numbers, the signature serves as a compact description (dimension reduction) of a path. In presenting its theoretical properties, we assume only familiarity with classical real analysis and integration, and supplement theory with straightforward examples. We also mention several advanced topics, including the role of the signature in rough path theory. In the second part, we present practical applications of the signature to the area of machine learning. The signature method is a non-parametric way of transforming data into a set of features that can be used in machine learning tasks. In this method, data are converted into multi-dimensional paths, by means of embedding algorithms, of which the signature is then computed. We describe this pipeline in detail, making a link with the properties of the signature presented in the first part. We furthermore review some of the developments of the signature method in machine learning and, as an illustrative example, present a detailed application of the method to handwritten digit classification. |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明