| 所在主题: | |
| 文件名: Numerical_Methods_of_Statistics.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-967550.html | |
| 附件大小: | |
|
作者:John F. Monahan
![]() 目录: 1 Algorithms and Computers 1 1.1 Introduction 1 1.2 Computers 3 1.3 Software and Computer Languages 5 1.4 Data Structures 8 1.5 Programming Practice 9 1.6 Some Comments on R 10 References 12 2 Computer Arithmetic 13 2.1 Introduction 13 2.2 Positional Number Systems 14 2.3 Fixed Point Arithmetic 17 2.4 Floating Point Representations 20 2.5 Living with Floating Point Inaccuracies 23 2.6 The Pale and Beyond 28 2.7 Conditioned Problems and Stable Algorithms 32 Programs and Demonstrations 34 Exercises 35 References 38 3 Matrices and Linear Equations 40 3.1 Introduction 40 3.2 Matrix Operations 41 3.3 Solving Triangular Systems 43 3.4 Gaussian Elimination 44 3.5 Cholesky Decomposition 50 3.6 Matrix Norms 54 3.7 Accuracy and Conditioning 55 3.8 Matrix Computations in R 60 Programs and Demonstrations 61 Exercises 63 References 65 4 More Methods for Solving Linear Equations 4.1 Introduction 4.2 Full Elimination with Complete Pivoting 4.3 Banded Matrices 4.4 Applications to ARMA Time-Series Models 4.5 Toeplitz Systems 4.6 Sparse Matrices 4.7 Iterative Methods 4.8 Linear Programming Programs and Demonstrations Exercises References 5 Regression Computations 91 5.1 Introduction 91 5.2 Condition of the Regression Problem 93 5.3 Solving the Normal Equations 96 5.4 Gram–Schmidt Orthogonalization 97 5.5 Householder Transformations 100 5.6 Householder Transformations for Least Squares 101 5.7 Givens Transformations 104 5.8 Givens Transformations for Least Squares 105 5.9 Regression Diagnostics 107 5.10 Hypothesis Tests 110 5.11 Conjugate Gradient Methods 112 5.12 Doolittle, the Sweep, and All Possible Regressions 115 5.13 Alternatives to Least Squares 118 5.14 Comments 120 Programs and Demonstrations 122 Exercises 122 References 125 6 Eigenproblems 128 6.1 Introduction 128 6.2 Theory 128 6.3 Power Methods 130 6.4 The Symmetric Eigenproblem and Tridiagonalization 133 6.5 The QR Algorithm 135 6.6 Singular Value Decomposition 137 6.7 Applications 140 6.8 Complex Singular Value Decomposition 144 Programs and Demonstrations 146 Exercises 147 References 150 7 Functions: Interpolation, Smoothing, and Approximation 151 7.1 151 Introduction 153 7.2 156 Interpolation 159 7.3 163 Interpolating Splines 168 7.4 170 Curve Fitting with Splines: Smoothing and Regression 177 7.5 179 Mathematical Approximation 183 7.6 Practical Approximation Techniques 7.7 Computing Probability Functions Programs and Demonstrations Exercises References 8 Introduction to Optimization and Nonlinear Equations 186 8.1 186 Introduction 8.2 Safe Univariate Methods: Lattice Search, Golden Section, and Bisection 8.3 Root Finding 8.4 First Digression: Stopping and Condition 8.5 Multivariate Newton’s Methods 8.6 Second Digression: Numerical Differentiation 8.7 Minimization and Nonlinear Equations 8.8 Condition and Scaling 8.9 Implementation 8.10 A Non-Newton Method: Nelder-Mead Programs and Demonstrations Exercises References Maximum Likelihood and Nonlinear Regression 219 9.1 219 Introduction 220 9.2 226 Notation and Asymptotic Theory of Maximum Likelihood 228 9.3 230 Information, Scoring, and Variance Estimates 236 9.4 An Extended Example 237 9.5 242 Concentration, Iteration, and the EM Algorithm 246 9.6 251 Multiple Regression in the Context of Maximum Likelihood 252 9.7 255 Generalized Linear Models 9.8 Nonlinear Regression 9.9 Parameterizations and Constraints Programs and Demonstrations Exercises References Numerical Integration and Monte Carlo Methods 257 10.1 257 Introduction 258 10.2 264 Motivating Problems 10.3 One-Dimensional Quadrature Contents 10.4 Numerical Integration in Two or More Variables 10.5 Uniform Pseudorandom Variables 10.6 Quasi–Monte Carlo Integration 10.7 Strategy and Tactics Programs and Demonstrations Exercises References 11 Generating Random Variables from Other Distributions 303 11.1 303 Introduction 304 11.2 308 General Methods for Continuous Distributions 321 11.3 Algorithms for Continuous Distributions 325 11.4 330 General Methods for Discrete Distributions 334 11.5 Algorithms for Discrete Distributions 337 11.6 338 Other Randomizations 341 11.7 Accuracy in Random Number Generation Programs and Demonstrations Exercises References 12 Statistical Methods for Integration and Monte Carlo 343 12.1 343 Introduction 343 12.2 350 Distribution and Density Estimation 353 12.3 359 Distributional Tests 361 12.4 363 Importance Sampling and Weighted Observations 365 12.5 Testing Importance Sampling Weights 370 12.6 372 Laplace Approximations 373 12.7 Randomized Quadrature 12.8 Spherical–Radial Methods Programs and Demonstrations Exercises References 13 Markov Chain Monte Carlo Methods 375 13.1 375 Introduction 377 13.2 378 Markov Chains 383 13.3 386 Gibbs Sampling 390 13.4 394 Metropolis–Hastings Algorithm 398 13.5 Time-Series Analysis 398 13.6 Adaptive Acceptance / Rejection 400 13.7 Diagnostics Programs and Demonstrations Exercises References 14 Sorting and Fast Algorithms 14.1 Introduction 14.2 Divide and Conquer 14.3 Sorting Algorithms 14.4 Fast Order Statistics and Related Problems 14.5 Fast Fourier Transform 14.6 Convolutions and the Chirp-z Transform 14.7 Statistical Applications of the FFT 14.8 Combinatorial Problems Programs and Demonstrations Exercises References |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明