| 所在主题: | |
| 文件名: Complex Analysis 3ed_Joseph Bak(Springer 2010 341s).pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-993142.html | |
| 附件大小: | |
|
Complex Analysis (Undergraduate Texts in Mathematics) Joseph Bak (Author), Donald J. Newman (Author)
Product Details
Contents Preface to the Third Edition ......................................... v Preface to the Second Edition ........................................ vii 1 The Complex Numbers ......................................... 1 Introduction .................................................... 1 1.1TheField of Complex Numbers .............................. 1 1.2 The Complex Plane ......................................... 4 1.3TheSolution of the Cubic Equation ........................... 9 1.4 Topological Aspects of the Complex Plane ..................... 12 1.5 StereographicProjection; The Point at Infinity .................. 16 Exercises ...................................................... 18 2 Functions of the Complex Variable z ............................. 21 Introduction .................................................... 21 2.1 Analytic Polynomials ....................................... 21 2.2PowerSeries .............................................. 25 2.3Differentiability and Uniqueness of Power Series ................ 28 Exercises ...................................................... 32 3 Analytic Functions ............................................. 35 3.1Analyticity and the Cauchy-Riemann Equations ................. 35 3.2 The Functions ez ,sin z,cos z ................................. 40 Exercises ...................................................... 41 4 Line Integrals and Entire Functions .............................. 45 Introduction .................................................... 45 4.1 Properties of the Line Integral ................................ 45 4.2 The Closed Curve Theorem for Entire Functions ................ 52 Exercises ...................................................... 56 5 Properties of Entire Functions ................................... 59 5.1 The Cauchy Integral Formula and Taylor Expansion for Entire Functions ........................................ 59 5.2Liouville Theorems and the Fundamental Theorem of Algebra; The Gauss-Lucas Theorem ...................................... 65 5.3Newton’s Method and Its Application to Polynomial Equations .... 68 Exercises ...................................................... 74 6 Properties of Analytic Functions ................................. 77 Introduction .................................................... 77 6.1 The Power Series Representation for Functions Analytic inaDisc .. 77 6.2Analytic inanArbitrary Open Set ............................. 81 6.3TheUniqueness, Mean-Value, and Maximum-Modulus Theorems; Critical Points and Saddle Points .............................. 82 Exercises ...................................................... 90 7 Further Properties of Analytic Functions ......................... 93 7.1 The Open Mapping Theorem; Schwarz’ Lemma ................. 93 7.2 The Converse of Cauchy’s Theorem: Morera’s Theorem; The Schwarz Reflection Principle and AnalyticArcs ................. 98 Exercises ...................................................... 104 8 Simply Connected Domains ..................................... 107 8.1 The General Cauchy Closed Curve Theorem .................... 107 8.2 The Analytic Function log z .................................. 113 Exercises ...................................................... 116 9 Isolated Singularities of an Analytic Function ..................... 117 9.1 Classification of Isolated Singularities; Riemann’sPrinciple and the Casorati-Weierstrass Theorem ................................ 117 9.2 Laurent Expansions ......................................... 120 Exercises ...................................................... 126 10 The Residue Theorem ............ ..... ......................... 129 10.1Winding Numbers and the Cauchy Residue Theorem............. 129 10.2 Applications of the Residue Theorem .......................... 135 Exercises ...................................................... 141 11 Applications of the Residue Theorem to the Evaluation of Integrals and Sums ..................................................... 143 Introduction .................................................... 143 11.1Evaluation of Definite Integrals by Contour Integral Techniques ... 143 11.2 Application of Contour Integral Methods to Evaluation and Estimation of Sums ..................................... 151 Exercises ...................................................... 158 12 Further Contour Integral Techniques ............................ 161 12.1Shifting the Contour of Integration ............................ 161 12.2AnEntire Function Bounded inEveryDirection ................. 164 Exercises ...................................................... 167 13 Introduction to ConformalMapping ............................. 169 13.1 Conformal Equivalence ..................................... 169 13.2Special Mappings .......................................... 175 13.3 Schwarz-Christoffel Transformations .......................... 187 Exercises ...................................................... 192 14 The Riemann Mapping Theorem ................................ 195 14.1 ConformalMapping and Hydrodynamics ....................... 195 14.2TheRiemann Mapping Theorem .............................. 200 14.3 Mapping Properties of Analytic Functions on Closed Domains ... ........................................ 204 Exercises ...................................................... 213 15 Maximum-Modulus Theorems for Unbounded Domains .......... ..... ......................... 215 15.1 A General Maximum-Modulus Theorem ....................... 215 15.2 The Phragmén-Lindelöf Theorem ............................. 218 Exercises ...................................................... 223 16 Harmonic Functions ............................................ 225 16.1Poisson Formulae and the Dirichlet Problem .................... 225 16.2Liouville Theorems for Re f ; Zeroes of Entire Functions of Finite Order ............................................. 233 Exercises ...................................................... 238 17 Different Forms of Analytic Functions ............................ 241 Introduction .................................................... 241 17.1Infinite Products ........................................... 241 17.2Analytic Functions Defined by Definite Integrals ................ 249 17.3Analytic Functions Defined by Dirichlet Series .................. 251 Exercises ...................................................... 255 18 Analytic Continuation; The Gamma and Zeta Functions ............................................. 257 Introduction .................................................... 257 18.1PowerSeries .............................................. 257 18.2Analytic Continuation of Dirichlet Series ....................... 263 18.3 The Gamma and Zeta Functions .............................. 265 Exercises ...................................................... 271 19 Applications to Other Areas of Mathematics ...................... 273 Introduction .................................................... 273 19.1AVariation Problem ........................................ 273 19.2 The Fourier Uniqueness Theorem ............................. 275 19.3AnInfinite System of Equations .............................. 277 19.4 Applications to Number Theory .............................. 278 19.5AnAnalyticProofofThePrime Number Theorem............... 285 Exercises ...................................................... 290 Answers ........................................................... 291 References ......................................................... 319 Appendices ........................................................ 321 Index ............................................................. 325 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明