楼主: jiandong4388
1489 2

[学科前沿] 【独家发布】【搬运工系列】An introduction to mixture item response theory models [推广有奖]

贵宾

一无所有的小博

已卖:1992份资源

学科带头人

79%

还不是VIP/贵宾

-

TA的文库  其他...

数据文库

IRT

meta-analysis

威望
1
论坛币
220561 个
通用积分
8539.5183
学术水平
361 点
热心指数
464 点
信用等级
300 点
经验
72058 点
帖子
2255
精华
2
在线时间
1693 小时
注册时间
2013-7-7
最后登录
2025-12-1

楼主
jiandong4388 学生认证  发表于 2018-11-19 16:04:07 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Abstract

Mixture item response theory (IRT) allows one to address situations that involve a mixture of latent subpopulations that are qualitatively different but within which a measurement model based on a continuous latent variable holds. In this modeling framework, one can characterize students by both their location on a continuous latent variable as well as by their latent class membership. For example, in a study of risky youth behavior this approach would make it possible to estimate an individual's propensity to engage in risky youth behavior (i.e., on a continuous scale) and to use these estimates to identify youth who might be at the greatest risk given their class membership. Mixture IRT can be used with binary response data (e.g., true/false, agree/disagree, endorsement/not endorsement, correct/incorrect, presence/absence of a behavior), Likert response scales, partial correct scoring, nominal scales, or rating scales. In the following, we present mixture IRT modeling and two examples of its use. Data needed to reproduce analyses in this article are available as supplemental online materials at http://dx.doi.org/10.1016/j.jsp.2016.01.002.


本文仅供学习使用,请勿商用,如有侵权请告知,删帖!

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:搬运工

本帖被以下文库推荐

  • · IRT|主题: 107, 订阅: 74
喜欢经济学,行为学,投资学,行为学,心理学,and 编程

沙发
书海溪流 发表于 2018-11-19 17:35:46
多谢分享

藤椅
wangyong8935 在职认证  发表于 2019-11-16 08:48:09
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-6 02:49