|
lda主要用于线性降维,有以下几种用法
1.一般的
lda(x, ...)
2.对于公式类的
lda(formula, data, ..., subset, na.action)
3.默认
lda(x, grouping, prior = proportions, tol = 1.0e-4,
method, CV = FALSE, nu, ...)
3.对于数据是数据框结构的
lda(x, ...)
4.对于数据的矩阵的
lda(x, grouping, ..., subset, na.action)
例子
Iris <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),
Sp = rep(c("s","c","v"), rep(50,3)))
train <- sample(1:150, 75)
table(Iris$Sp[train])
## your answer may differ
## c s v
## 22 23 30
z <- lda(Sp ~ ., Iris, prior = c(1,1,1)/3, subset = train)
predict(z, Iris[-train, ])$class
## [1] s s s s s s s s s s s s s s s s s s s s s s s s s s s c c c
## [31] c c c c c c c v c c c c v c c c c c c c c c c c c v v v v v
## [61] v v v v v v v v v v v v v v v
(z1 <- update(z, . ~ . - Petal.W.))
|