楼主: JoinQuant
58 0

[程序化交易] 从最大化复合因子单期IC角度看因子权重 [推广有奖]

  • 0关注
  • 14粉丝

等待验证会员

博士生

4%

还不是VIP/贵宾

-

威望
0
论坛币
102 个
通用积分
10.0650
学术水平
11 点
热心指数
8 点
信用等级
8 点
经验
3218 点
帖子
88
精华
0
在线时间
122 小时
注册时间
2015-9-9
最后登录
2019-7-18

JoinQuant 企业认证  发表于 2019-7-13 10:23:04 |显示全部楼层
本帖最后由 JoinQuant 于 2019-7-13 10:24 编辑









未经授权,严禁转载

前言



本文沿用 Qian 的最优化体系获取因子权重,与之不同的是,我们将优化目标由最大化复合因子 IC_IR 变为最大化复合因子单期 IC。通过多个例子的实证研究发现,最大化单期IC能有效解决“等权”的配置偏差问题,在绝大部分因子空间,最优 IC 加权所构建的组合,其表现均优于按照“等权”方式所构建的组合。

研究目的
本文参考广发证券研报《从最大化复合因子单期 IC 角度看因子权重》,根据研报分析,现阶段应用较多的因子加权方法主要有以下几种: 等权加权、 IC 加权和 IC_IR 加权、以及最优化 IC_IR 加权。其中,等权加权是因子加权最传统的方法,这种方法受因子之间有效性差异、线性相关性影响明显。而 IC 加权、 IC_IR 加权对等权方式忽视了因子有效性差异的问题进行了改进,在大部分情况下会优于等权加权形式。最大化复合因子 IC_IR 加权已运用较广。

研究内容
(1)传统因子加权方式的局限性: 选择 ZZ800 为股票池,以市值因子和营业利润同比增长率为例,分析等权加权与 IC 加权的差异,根据回测结果分析两种因子加权方式的效用;

(2)设计最大化复合因子单期 IC 的理论最优比例: 本文沿用 Qian 的最优化体系获取因子权重,与之不同的是,我们将优化目标由最大化复合因子 IC_IR 变为最大化复合因子单期 IC。理论解析解的形式表明,最大化复合因子单期 IC 的权重与两方面因素有关: 一是因子的有效性,即因子 IC; 二是因子之间的相关系数。

(3)最大化复合因子单期 IC 的应用: 本文通过例子实证研究发现,最大化单期 IC 能有效解决“等权”的配置偏差问题,在绝大部分因子空间,最优 IC 加权 所构建的组合,其表现均优于按照“等权”方式所构建的组合。

研究结论
(1)通过对市值因子与营业利润同比增长率为例进行分析,IC 加权对等权方式忽视了因子有效性差异的问题进行了改进,在大部分情况下会优于等权加权形式。

(2)本文沿用 Qian 的最优化体系获取因子权重,与之不同的是,我们将优化目标由最大化复合因子 IR 变为最大化复合因子单期 IC,并根据该方法进行因子权重的计算。理论解析解的形式表明,最大化复合因子单期 IC 的权重与两方面因素有关: 一是因子的有效性,即因子 IC; 二是因子之间的相关系数。

(3)通过以下 7 个因子: 市盈率(PB)、市净率(PE)、市销率(PS)、营业利润同比增长率、资产负债率、反转(前 1 月累计收益)、换手率(前 10 个交易日日均换手率),进行不同因子加权方法的测试。文章实证结果也表明,最大化单期 IC 能有效解决“等权”的配置偏差问题,在绝大部分情况,最优 IC 加权所构建的组合,其表现均优于“等权”方式 所构建的组合,最大化单期 IC 能够获得最佳的结果。

>>> 因子等权加权
1.1 日期列表获取
在每个月的月末对因子数据进行提取,因此需要对每个月的月末日期进行统计。

输入参数分别为 peroid、start_date 和 end_date,其中 peroid 进行周期选择,可选周期为周(W)、月(M)和季(Q),start_date和end_date 分别为开始日期和结束日期。

函数返回值为对应的月末日期,如选取开始日期为 2017.1.1,结束日期为 2018.1.1。

1.2 股票列表获取
股票池: ZZ800股票筛选: 剔除 ST 股票,剔除上市 3 个月内的股票,每只股票视作一个样本以 ZZ800 为例,取 2016-08-31 当天的股票成分股

1.3 数据获取
本章旨在分析因子等权加权回测效果,股票选为 ZZ800,回测时间为 2013.1.1 至 2018.1.1,因子选定为市值和营业利润同比增长率,在每个月最后一个自然日,获取当前最新的因子数据以及对应的股票超额收益。

1.4 数据分析
考虑一个包含市值、营业利润同比增长率的两因子模型,本章分别基于两种加权方式计算复合因子值,然后选择复合因子值最高的 100 只股票构建组合。其中,组合 1 为等权组合,即市值和营业利润同比增长率按照等权的方式加总为复合因子; 组合 2 为 60/40 组合,即市值和营业利润同比增长率因子的加权比例分别为 60%、40%。

股票池: ZZ800,剔除 ST 股票以及上市 3 个月内的股票对比基准: ZZ800交易费用: 千分之 1.5调仓周期: 月



















第一张图统计了两因子等权组合及 60/40 组合的净值曲线图,上表统计了两个组合的超额收益指标对比。从中可看出,提高了市值权重的60/40 组合,收益率高于等权组合,同时风险(最大回撤、年化波动率)也高于等权组合。此外,从月度角度来看,等权因子组合和 60/40 组合的稳定性都非常高。

>>> 因子IC加权
2.1 因子 IC 分析
对比市值和营业利润同比增长率的 IC 序列统计特征可发现,市值因子的IC均值(0.09)明显优于营业利润同比增长率(0.028),同时前者IC 序列的波动性也高于后者。从 IR 来看,市值因子效果更好,这种效果相差明显的情况下,简单的等权加权并不能体现市值因子的强有效选股效应,从而拖累了多因子组合的表现。

2.2 因子 IC 等权组合分析











第一张图统计了两因子等权组合、60/40 组合以及 IC 加权因子组合的净值曲线图,上表统计了这三个组合的超额收益指标对比。从中可看出, 出IC 加权组合的收益率明显高于等权组合以及60/40 组合,同时风险(最大回撤、年化波动率)也高于等权组合以及 60/40 组合。但是从夏普比率来看,因子 IC 加权组合的收益风险比高于其余两个组合。从月度收益来看,因子 IC 加权组合的月胜率为 85%,可见模型收益稳定性得到进一步提高。

进一步分析发现,在市值、营业利润同比增长率的例子中,两因子按照 IC 加权的权重分别为 76.90% 和 23.10%;市值因子的权重高于等权形式,也高于主观的 60/40 组合。也就是说,因子 IC 加权组合增加了收益高、波动大的“市值因子”权重,减少了收益低、波动小的“营业利润同比增长率”权重,从而使得 IC 加权组合的整体收益、波动均高于等权组合。

>>> 最大化复合因子单期IC
3.1 理论最优比例的计算
由前面的分析可知,在对因子加权时,需考虑因子本身的有效性(IC),但因子 IC 加权并非在所有情况下都优于等权组合。那么,从理论上看若以最大化复合因子单期 IC 为目标,最优加权比例与哪些因素相关呢?

假设有 M 个因子,分别为 F1、F2、…、Fm,它们基于权重序列W=(w1,…,wm)加总为复合因子Fc,即





按照前面的说明,我们最优化的目标函数为:





假设两因子横截面协方差为:





相应的协方差矩阵为





同时对每一期的因子值进行标准化处理,使得因子标准差变为1,则上面的复合因子IC可简化为如下形式:





从上面的解析式可看出,最大化复合因子单期IC 的理论最优权重与两方面的因素有关:因子之间的协方差,以及因子IC。为说明相关系数(协方差)与最优权重的关系,我们以两因子模型的例子进行说明。在一个只包含两个因子的模型中,上述等式可以简化如下形式:





从上面的简化形式可以看出,若两因子为正相关关系,则相比于 IC 加权,最优 IC 加权方式会增加有效性更高(即 IC 更大)的因子权重;若两因子为负相关关系,则最优 IC 加权会增加有效性相对较低的因子权重,以稳定组合的收益。




3.2 组合测试

接下来,利用前一部分推导的最优 IC 加权方式,针对 7 个因子构建多因子模型: 市盈率(PB)、市净率(PE)、市销率(PS)、营业利润同比增长率、资产负债率、反转(前 1 月累计收益)、换手率(前 10 个交易日日均换手率)。每个月最后一个自然日,获取这 7 个因子数据以及下个月相对 ZZ800 的超额收益。为综合比较前文所提及的三种加权方式,在此部分的应用中我们仍然构建 3 个组合进行对比,分别是因子等权组合、因子 IC 加权以及最优 IC 加权组合。

股票池: ZZ800,剔除 ST 股票以及上市 3 个月内的股票对比基准: ZZ800交易费用: 千分之 1.5调仓周期: 月





在上述 7 个因子的例子中,回测时间在 2013 - 2018,等权组合的年化超额收益为 19.87%,但夏普比率较低,为1.00。因子 IC 加权组合的收益表现略优于等权组合,年化收益增加至 22.27%,夏普比率也比其更高,为 1.09。三个组合中表现最好的是最优 IC 加权组合,其年化超额达 23.61%,夏普比率在三种也是最高,为 1.17。

总结
目前而言,应用较多的因子加权方法主要有以下几种: 等权加权、IC 加权和 IC_IR 加权、以及最优化 IC_IR 加权。其中,等权加权是因子加权最传统的方法,这种方法受因子之间有效性差异、线性相关性影响明显。而 IC 加权对等权方式忽视了因子有效性差异的问题进行了改进,在大部分情况下会优于等权加权形式。

Qian 在《Quantitative Equtiy Portfolio Management》一书中提出以最大化复合因子 IC_IR 获得因子权重,综合考虑了因子的 IC 大小以及 IC 时间序列的稳定性,目前已有许多文章对此种加权方式进行了测试。

本文沿用 Qian 的最优化体系获取因子权重,与之不同的是,我们将优化目标由最大化复合因子 IR 变为最大化复合因子单期 IC。理论解析解的形式表明,最大化复合因子单期 IC 的权重与两方面因素有关: 一是因子的有效性,即因子 IC;二是因子之间的相关系数。同时,文章实证结果也表明,最大化单期 IC 能有效解决“等权”的配置偏差问题,在绝大部分因子空间,最优 IC 加权所构建的组合,其表现均优于“等权”方式 所构建的组合。

点击【阅读原文】,查看研究原码~




您需要登录后才可以回帖 登录 | 我要注册

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2019-7-19 06:19