Complex Analysis - Springer(清晰 带书签)-经管之家官网!

人大经济论坛-经管之家 收藏本站
您当前的位置> 会计>>

会计库

>>

Complex Analysis - Springer(清晰 带书签)

Complex Analysis - Springer(清晰 带书签)

发布:axltang | 分类:会计库

关于本站

人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!

经管之家新媒体交易平台

提供"微信号、微博、抖音、快手、头条、小红书、百家号、企鹅号、UC号、一点资讯"等虚拟账号交易,真正实现买卖双方的共赢。【请点击这里访问】

提供微信号、微博、抖音、快手、头条、小红书、百家号、企鹅号、UC号、一点资讯等虚拟账号交易,真正实现买卖双方的共赢。【请点击这里访问】

ComplexAnalysis(UndergraduateTextsinMathematics)JosephBak(Author),DonaldJ.Newman(Author)ProductDetailsHardcover:331pagesPublisher:Springer;3rded.edition(August6,2010)Language:EnglishISBN-10:1441972870 ...
免费学术公开课,扫码加入


Complex Analysis (Undergraduate Texts in Mathematics) Joseph Bak (Author), Donald J. Newman (Author)

Product Details
  • Hardcover: 331 pages
  • Publisher: Springer; 3rd ed. edition (August 6, 2010)
  • Language: English
  • ISBN-10: 1441972870
  • ISBN-13: 978-1441972873
  • Product Dimensions: 9.2 x 6.1 x 0.9 inches

Contents
Preface to the Third Edition ......................................... v
Preface to the Second Edition ........................................ vii
1 The Complex Numbers ......................................... 1
Introduction .................................................... 1
1.1TheField of Complex Numbers .............................. 1
1.2 The Complex Plane ......................................... 4
1.3TheSolution of the Cubic Equation ........................... 9
1.4 Topological Aspects of the Complex Plane ..................... 12
1.5 StereographicProjection; The Point at Infinity .................. 16
Exercises ...................................................... 18
2 Functions of the Complex Variable z ............................. 21
Introduction .................................................... 21
2.1 Analytic Polynomials ....................................... 21
2.2PowerSeries .............................................. 25
2.3Differentiability and Uniqueness of Power Series ................ 28
Exercises ...................................................... 32
3 Analytic Functions ............................................. 35
3.1Analyticity and the Cauchy-Riemann Equations ................. 35
3.2 The Functions ez
,sin z,cos z ................................. 40
Exercises ...................................................... 41
4 Line Integrals and Entire Functions .............................. 45
Introduction .................................................... 45
4.1 Properties of the Line Integral ................................ 45
4.2 The Closed Curve Theorem for Entire Functions ................ 52
Exercises ...................................................... 56
5 Properties of Entire Functions ................................... 59
5.1 The Cauchy Integral Formula and Taylor Expansion
for Entire Functions ........................................ 59
5.2Liouville Theorems and the Fundamental Theorem of Algebra; The
Gauss-Lucas Theorem ...................................... 65
5.3Newton’s Method and Its Application to Polynomial Equations .... 68
Exercises ...................................................... 74
6 Properties of Analytic Functions ................................. 77
Introduction .................................................... 77
6.1 The Power Series Representation for Functions Analytic inaDisc .. 77
6.2Analytic inanArbitrary Open Set ............................. 81
6.3TheUniqueness, Mean-Value, and Maximum-Modulus Theorems;
Critical Points and Saddle Points .............................. 82
Exercises ...................................................... 90
7 Further Properties of Analytic Functions ......................... 93
7.1 The Open Mapping Theorem; Schwarz’ Lemma ................. 93
7.2 The Converse of Cauchy’s Theorem: Morera’s Theorem; The
Schwarz Reflection Principle and AnalyticArcs ................. 98
Exercises ...................................................... 104
8 Simply Connected Domains ..................................... 107
8.1 The General Cauchy Closed Curve Theorem .................... 107
8.2 The Analytic Function log z .................................. 113
Exercises ...................................................... 116
9 Isolated Singularities of an Analytic Function ..................... 117
9.1 Classification of Isolated Singularities; Riemann’sPrinciple and the
Casorati-Weierstrass Theorem ................................ 117
9.2 Laurent Expansions ......................................... 120
Exercises ...................................................... 126
10 The Residue Theorem ............ ..... ......................... 129
10.1Winding Numbers and the Cauchy Residue Theorem............. 129
10.2 Applications of the Residue Theorem .......................... 135
Exercises ...................................................... 141
11 Applications of the Residue Theorem to the Evaluation of Integrals
and Sums ..................................................... 143
Introduction .................................................... 143
11.1Evaluation of Definite Integrals by Contour Integral Techniques ... 143
11.2 Application of Contour Integral Methods to Evaluation
and Estimation of Sums ..................................... 151
Exercises ...................................................... 158
12 Further Contour Integral Techniques ............................ 161
12.1Shifting the Contour of Integration ............................ 161
12.2AnEntire Function Bounded inEveryDirection ................. 164
Exercises ...................................................... 167
13 Introduction to ConformalMapping ............................. 169
13.1 Conformal Equivalence ..................................... 169
13.2Special Mappings .......................................... 175
13.3 Schwarz-Christoffel Transformations .......................... 187
Exercises ...................................................... 192
14 The Riemann Mapping Theorem ................................ 195
14.1 ConformalMapping and Hydrodynamics ....................... 195
14.2TheRiemann Mapping Theorem .............................. 200
14.3 Mapping Properties of Analytic Functions on
Closed Domains ... ........................................ 204
Exercises ...................................................... 213
15 Maximum-Modulus Theorems
for Unbounded Domains .......... ..... ......................... 215
15.1 A General Maximum-Modulus Theorem ....................... 215
15.2 The Phragmén-Lindelöf Theorem ............................. 218
Exercises ...................................................... 223
16 Harmonic Functions ............................................ 225
16.1Poisson Formulae and the Dirichlet Problem .................... 225
16.2Liouville Theorems for Re f ; Zeroes of Entire Functions
of Finite Order ............................................. 233
Exercises ...................................................... 238
17 Different Forms of Analytic Functions ............................ 241
Introduction .................................................... 241
17.1Infinite Products ........................................... 241
17.2Analytic Functions Defined by Definite Integrals ................ 249
17.3Analytic Functions Defined by Dirichlet Series .................. 251
Exercises ...................................................... 255
18 Analytic Continuation; The Gamma
and Zeta Functions ............................................. 257
Introduction .................................................... 257
18.1PowerSeries .............................................. 257
18.2Analytic Continuation of Dirichlet Series ....................... 263
18.3 The Gamma and Zeta Functions .............................. 265
Exercises ...................................................... 271
19 Applications to Other Areas of Mathematics ...................... 273
Introduction .................................................... 273
19.1AVariation Problem ........................................ 273
19.2 The Fourier Uniqueness Theorem ............................. 275
19.3AnInfinite System of Equations .............................. 277
19.4 Applications to Number Theory .............................. 278
19.5AnAnalyticProofofThePrime Number Theorem............... 285
Exercises ...................................................... 290
Answers ........................................................... 291
References ......................................................... 319
Appendices ........................................................ 321
Index ............................................................. 325
「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
本文关键词:

本文论坛网址:https://bbs.pinggu.org/thread-1241889-1-1.html

人气文章

1.凡人大经济论坛-经管之家转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。