[下载]Real Analysis with Economic Applications-经管之家官网!

人大经济论坛-经管之家 收藏本站
您当前的位置> 会计>>

会计库

>>

[下载]Real Analysis with Economic Applications

[下载]Real Analysis with Economic Applications

发布:风中尘埃 | 分类:会计库

关于本站

人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!

经管之家新媒体交易平台

提供"微信号、微博、抖音、快手、头条、小红书、百家号、企鹅号、UC号、一点资讯"等虚拟账号交易,真正实现买卖双方的共赢。【请点击这里访问】

提供微信号、微博、抖音、快手、头条、小红书、百家号、企鹅号、UC号、一点资讯等虚拟账号交易,真正实现买卖双方的共赢。【请点击这里访问】

EfeA.OkThisbookbasicallyisthefirstpartof<RealAnalysisandProbabilitywithEconomicApplication>.Butthisbookhasasolutionhinttosomeexercisesinthebook.That'swhyIstilllistithere.TABLEOFCONTENTS:Pref ...
坛友互助群


扫码加入各岗位、行业、专业交流群


Efe A. Ok
This book basically is the first part of <Real Analysis and Probability with Economic Application>. But this book has a solution hint to some exercises in the book. That's why I still list it here.
TABLE OF CONTENTS:
Preface xvii
Prerequisites xxvii
Basic Conventions xxix
Part I: SET THEORY 1
Chapter A: Preliminaries of Real Analysis 3
A.1 Elements of Set Theory 4
A.1.1 Sets 4
A.1.2 Relations 9
A.1.3 Equivalence Relations 11
A.1.4 Order Relations 14
A.1.5 Functions 20
A.1.6 Sequences, Vectors, and Matrices 27
A.1.7* A Glimpse of Advanced Set Theory: The Axiom of Choice 29
A.2 Real Numbers 33
A.2.1 Ordered Fields 33
A.2.2 Natural Numbers, Integers, and Rationals 37
A.2.3 Real Numbers 39
A.2.4 Intervals and R 44
A.3 Real Sequences 46
A.3.1 Convergent Sequences 46
A.3.2 Monotonic Sequences 50
A.3.3 Subsequential Limits 53
A.3.4 Infinite Series 56
A.3.5 Rearrangement of Infinite Series 59
A.3.6 Infinite Products 61
A.4 Real Functions 62
A.4.1 Basic Definitions 62
A.4.2 Limits, Continuity, and Differentiation 64
A.4.3 Riemann Integration 69
A.4.4 Exponential, Logarithmic, and Trigonometric Functions 74
A.4.5 Concave and Convex Functions 77
A.4.6 Quasiconcave and Quasiconvex Functions 80
Chapter B: Countability 82
B.1 Countable and Uncountable Sets 82
B.2 Losets and Q 90
B.3 Some More Advanced Set Theory 93
B.3.1 The Cardinality Ordering 93
B.3.2* The Well-Ordering Principle 98
B.4 Application: Ordinal Utility Theory 99
B.4.1 Preference Relations 100
B.4.2 Utility Representation of Complete Preference Relations 102
B.4.3* Utility Representation of Incomplete Preference Relations 107
Part II: ANALYSIS ON METRIC SPACES 115
Chapter C: Metric Spaces 117
C.1 Basic Notions 118
C.1.1 Metric Spaces: Definition and Examples 119
C.1.2 Open and Closed Sets 127
C.1.3 Convergent Sequences 132
C.1.4 Sequential Characterization of Closed Sets 134
C.1.5 Equivalence of Metrics 136
C.2 Connectedness and Separability 138
C.2.1 Connected Metric Spaces 138
C.2.2 Separable Metric Spaces 140
C.2.3 Applications to Utility Theory 145
C.3 Compactness 147
C.3.1 Basic Definitions and the Heine-Borel Theorem 148
C.3.2 Compactness as a Finite Structure 151
C.3.3 Closed and Bounded Sets 154
C.4 Sequential Compactness 157
C.5 Completeness 161
C.5.1 Cauchy Sequences 161
C.5.2 Complete Metric Spaces: Definition and Examples 163
C.5.3 Completeness versus Closedness 167
C.5.4 Completeness versus Compactness 171
C.6 Fixed Point Theory I 172
C.6.1 Contractions 172
C.6.2 The Banach Fixed Point Theorem 175
C.6.3* Generalizations of the Banach Fixed Point Theorem 179
C.7 Applications to Functional Equations 183
C.7.1 Solutions of Functional Equations 183
C.7.2 Picard's Existence Theorems 187
C.8 Products of Metric Spaces 192
C.8.1 Finite Products 192
C.8.2 Countably Infinite Products 193
Chapter D: Continuity I 200
D.1 Continuity of Functions 201
D.1.1 Definitions and Examples 201
D.1.2 Uniform Continuity 208
D.1.3 Other Continuity Concepts 210
D.1.4* Remarks on the Differentiability of Real Functions 212
D.1.5 A Fundamental Characterization of Continuity 213
D.1.6 Homeomorphisms 216
D.2 Continuity and Connectedness 218
D.3 Continuity and Compactness 222
D.3.1 Continuous Image of a Compact Set 222
D.3.2 The Local-to-Global Method 223
D.3.3 Weierstrass' Theorem 225
D.4 Semicontinuity 229
D.5 Applications 237
D.5.1* Caristi's Fixed Point Theorem 238
D.5.2 Continuous Representation of a Preference Relation 239
D.5.3* Cauchy's Functional Equations: Additivity on Rn 242
D.5.4* Representation of Additive Preferences 247
D.6 CB(T) and Uniform Convergence 249
D.6.1 The Basic Metric Structure of CB(T) 249
D.6.2 Uniform Convergence 250
D.6.3* The Stone-Weierstrass Theorem and Separability of C(T) 257
D.6.4* The Arzelà-Ascoli Theorem 262
D.7* Extension of Continuous Functions 266
D.8 Fixed Point Theory II 272
D.8.1 The Fixed Point Property 273
D.8.2 Retracts 274
D.8.3 The Brouwer Fixed Point Theorem 277
D.8.4 Applications 280
Chapter E: Continuity II 283
E.1 Correspondences 284
E.2 Continuity of Correspondences 287
E.2.1 Upper Hemicontinuity 287
E.2.2 The Closed Graph Property 294
E.2.3 Lower Hemicontinuity 297
E.2.4 Continuous Correspondences 300
E.2.5* The Hausdorff Metric and Continuity 302
E.3 The Maximum Theorem 306
E.4 Application: Stationary Dynamic Programming 311
E.4.1 The Standard Dynamic Programming Problem 312
E.4.2 The Principle of Optimality 315
E.4.3 Existence and Uniqueness of an Optimal Solution 320
E.4.4 Application: The Optimal Growth Model 324
E.5 Fixed Point Theory III 330
E.5.1 Kakutani's Fixed Point Theorem 331
E.5.2* Michael's Selection Theorem 333
E.5.3* Proof of Kakutani's Fixed Point Theorem 339
E.5.4* Contractive Correspondences 341
E.6 Application: The Nash Equilibrium 343
E.6.1 Strategic Games 343
E.6.2 The Nash Equilibrium 346
E.6.3* Remarks on the Equilibria of Discontinuous Games 351
Part III: ANALYSIS ON LINEAR SPACES 355
Chapter F: Linear Spaces 357
F.1 Linear Spaces 358
F.1.1 Abelian Groups 358
F.1.2 Linear Spaces: Definition and Examples 360
F.1.3 Linear Subspaces, Affine Manifolds, and Hyperplanes 364
F.1.4 Span and Affine Hull of a Set 368
F.1.5 Linear and Affine Independence 370
F.1.6 Bases and Dimension 375
F.2 Linear Operators and Functionals 382
F.2.1 Definitions and Examples 382
F.2.2 Linear and Affine Functions 386
F.2.3 Linear Isomorphisms 389
F.2.4 Hyperplanes, Revisited 392
F.3 Application: Expected Utility Theory 395
F.3.1 The Expected Utility Theorem 395
F.3.2 Utility Theory under Uncertainty 403
F.4* Application: Capacities and the Shapley Value 409
F.4.1 Capacities and Coalitional Games 410
F.4.2 The Linear Space of Capacities 412
F.4.3 The Shapley Value 415
Chapter G: Convexity 422
G.1 Convex Sets 423
G.1.1 Basic Definitions and Examples 423
G.1.2 Convex Cones 428
G.1.3 Ordered Linear Spaces 432
G.1.4 Algebraic and Relative Interior of a Set 436
G.1.5 Algebraic Closure of a Set 447
G.1.6 Finitely Generated Cones 450
G.2 Separation and Extension in Linear Spaces 454
G.2.1 Extension of Linear Functionals 455
G.2.2 Extension of Positive Linear Functionals 460
G.2.3 Separation of Convex Sets by Hyperplanes 462
G.2.4 The External Characterization of Algebraically Closed and Convex Sets 471
G.2.5 Supporting Hyperplanes 473
G.2.6* Superlinear Maps 476
G.3 Reflections on Rn 480
G.3.1 Separation in Rn 480
G.3.2 Support in Rn 486
G.3.3 The Cauchy-Schwarz Inequality 488
G.3.4 Best Approximation from a Convex Set in Rn 489
G.3.5 Orthogonal Complements 492
G.3.6 Extension of Positive Linear Functionals, Revisited 496
Chapter H: Economic Applications 498
H.1 Applications to Expected Utility Theory 499
H.1.1 The Expected Multi-Utility Theorem 499
H.1.2* Knightian Uncertainty 505
H.1.3* The Gilboa-Schmeidler Multi-Prior Model 509
H.2 Applications to Welfare Economics 521
H.2.1 The Second Fundamental Theorem of Welfare Economics 521
H.2.2 Characterization of Pareto Optima 525
H.2.3* Harsanyi's Utilitarianism Theorem 526
H.3 An Application to Information Theory 528
H.4 Applications to Financial Economics 535
H.4.1 Viability and Arbitrage-Free Price Functionals 535
H.4.2 The No-Arbitrage Theorem 539
H.5 Applications to Cooperative Games 542
H.5.1 The Nash Bargaining Solution 542
H.5.2* Coalitional Games without Side Payments 546
Part IV: ANALYSIS ON METRIC/NORMED LINEAR SPACES 551
Chapter I: Metric Linear Spaces 553
I.1 Metric Linear Spaces 554
I.2 Continuous Linear Operators and Functionals 561
I.3 Finite-Dimensional Metric Linear Spaces 577
I.4* Compact Sets in Metric Linear Spaces 582
I.5 Convex Analysis in Metric Linear Spaces 587
Chapter J: Normed Linear Spaces 601
J.1 Normed Linear Spaces 602
J.2 Banach Spaces 616
J.3 Fixed Point Theory IV 623
J.4 Bounded Linear Operators and Functionals 638
J.5 Convex Analysis in Normed Linear Spaces 650
J.5.1 Separation by Closed Hyperplanes, Revisited 650
J.5.2* Best Approximation from a Convex Set 652
J.5.3 Extreme Points 654
J.6 Extension in Normed Linear Spaces 661
J.6.1 Extension of Continuous Linear Functionals 661
J.6.2* Infinite-Dimensional Normed Linear Spaces 663
J.7* The Uniform Boundedness Principle 665
Chapter K: Differential Calculus 670
K.1 Fréchet Differentiation 671
K.1.1 Limits of Functions and Tangency 671
K.1.2 What Is a Derivative? 672
K.1.3 The Fréchet Derivative 675
K.1.4 Examples 679
K.1.5 Rules of Differentiation 686
K.1.6 The Second Fréchet Derivative of a Real Function 690
K.1.7 Differentiation on Relatively Open Sets 694
K.2 Generalizations of the Mean Value Theorem 698
K.2.1 The Generalized Mean Value Theorem 698
K.2.2* The Mean Value Inequality 701
K.3 Fréchet Differentiation and Concave Maps 704
K.3.1 Remarks on the Differentiability of Concave Maps 704
K.3.2 Fréchet Differentiable Concave Maps 706
K.4 Optimization 712
K.4.1 Local Extrema of Real Maps 712
K.4.2 Optimization of Concave Maps 716
K.5 Calculus of Variations 718
K.5.1 Finite-Horizon Variational Problems 718
K.5.2 The Euler-Lagrange Equation 721
K.5.3* More on the Sufficiency of the Euler-Lagrange Equation 733
K.5.4 Infinite-Horizon Variational Problems 736
K.5.5 Application: The Optimal Investment Problem 738
K.5.6 Application: The Optimal Growth Problem 740
K.5.7* Application: The Poincaré-Wirtinger Inequality 743
Hints for Selected Exercises 747
References 777
Glossary of Selected Symbols 789
Index
扫码或添加微信号:坛友素质互助


「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
本文关键词:

本文论坛网址:https://bbs.pinggu.org/thread-836202-1-1.html

人气文章

1.凡人大经济论坛-经管之家转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
经管之家 人大经济论坛 大学 专业 手机版