关于本站
人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!
经管之家新媒体交易平台
提供"微信号、微博、抖音、快手、头条、小红书、百家号、企鹅号、UC号、一点资讯"等虚拟账号交易,真正实现买卖双方的共赢。【请点击这里访问】
论文
- 毕业论文 | 写毕业论文
- 毕业论文 | 为毕业论文找思路
- 毕业论文 | 可以有时间好好写 ...
- 毕业论文 | 毕业论文如何选较 ...
- 毕业论文 | 毕业论文选题通过 ...
- 毕业论文 | 还有三人的毕业论 ...
- 毕业论文 | 毕业论文答辩过程 ...
- 毕业论文 | 本科毕业论文,wi ...
考研考博
- 考博 | 南大考博经济类资 ...
- 考博 | 考博英语10000词汇 ...
- 考博 | 如果复旦、南大这 ...
- 考博 | 有谁知道春招秋季 ...
- 考博 | 工作与考博?到底 ...
- 考博 | 考博应该如何选择 ...
- 考博 | 考博失败了
- 考博 | 考博考研英语作文 ...
留学
- 日本留学 | 在日本留学心得
- 日本留学 | 日本留学生活必需 ...
- 日本留学 | 【留学日本】2015 ...
- 日本留学 | 日本海外留学8年来 ...
- 日本留学 | 日本留学费用_日本 ...
- 日本留学 | 求在日本留学的师 ...
- 日本留学 | 日本留学的有没有 ...
- 日本留学 | 日本留学
TOP热门关键词
Theinteractivebook"NeuralandAdaptiveSystems:FundamentalsThroughSimulations(ISBN:0471351679)"byPrincipe,Euliano,andLefebvre,hasbeenpublishedbyJohnWileyandSonsandisnowavailableforpurchasedirectlyfro ...
坛友互助群 |
扫码加入各岗位、行业、专业交流群 |
This electronic book combines the hypertext and searching capabilities of the Windows help system with the highly graphical simulation environment of NeuroSolutions to produce a revolutionary teaching tool. The book contains over 200 interactive experiments in NeuroSolutions to elucidate the fundamentals of neural networks and adaptive systems.
The inclusion of interactive experiments in the book allows for the presentation of key concepts without the use of complex equations. The lead author of the book is Dr. Jose Principe, director of the Computational NeuroEngineering Laboratory at the University of Florida. He is currently using this book in the Interactive Teaching Laboratory as the text for an undergraduate course in neural networks. Previously this course could not be taught at an undergraduate level due to the complex mathematical background that was required.
Included in the full Evaluation version of NeuroSolutions is the entire first chapter of the electronic book with examples. For a preview of the book without the experiments, the first chapter is also available in html. Remember, though, that the experiments are fundamental to the presentation and understanding of the topics. Downloading the full Evaluation version of NeuroSolutions provides a much better preview of the electronic book.
Table of Contents
Chapter I - Data Fitting with Linear Models
1. Introduction
2. Linear Models
3. Least Squares
4. Adaptive Linear System
5. Estimation of the Gradient: The LMS Algorithm
6. A Methodology for Stable Adaptation
7. Regression for Multiple Variables
8. Newton's Method
9. Analytic verses Iterative Solutions
10. The Linear Regession Model
11. Conclusions
Chapter II - Pattern Recognition
1. The Pattern Recognition Problem
2. Parametric Classifiers
3. Linear and Nonlinear Classifier Machines
4. Methods of Training Parametric Classifiers
5. Conclusions
Chapter III - Multilayer Perceptrons
1. Artificial Neural Networks
2. Pattern Recognition Ability of the McCulloch-Pitts PE
3. The Perceptron
4. One Hidden Layer Multilayer Perceptrons
5. MLPs with Two Hidden Layers
6. Training Static Networks with the Backpropagation Procedure
7. Training Embedded Adaptive Systems
8. MLPs as Optimal Classifiers
9. Conclusions
Chapter IV - Designing and Training MLPs
1. Introduction
2. Controlling Learning in Practice
3. Other Search Procedures
4. Stop Criteria
5. How Good are MLPs as Learning Machines?
6. Error Criterion
7. Network Size and Generalization
8. Project: Application of the MLP to Real-World Data
9. Conclusion
Chapter V- Function Approximation with MLPs and Radial Basis Functions
1. Introduction
2. Function Approximation
3. Choices for the Elementary Functions
4. Probabilistic Interpretation of the Mappings: Nonlinear Regression
5. Training Neural Networks for Function Approximation
6. How to Select the Number of Bases
7. Applications of Radial Basis Functions
8. Support Vector Machines
9. Project: Applications of Neural Networks as Function Approximators
10 Conclusion
Chapter VI- Hebbian Learning and Principal Component Analysis
1. Introduction
2. Effect of the Hebbian Update
3. Oja's Rule
4. Principal Component Analysis
5. Anti-Hebbian Learning
6. Estimating Cross-correlation with Hebbian Networks
7. Novelty Filters and Lateral Inhibition
8. Linear Associative Memories (LAMs)
9. LMS Learning as a Combination of Hebbian Rules
10. Autoassociation
11. Nonlinear Associative Memories
12. Project: Use of Hebbian Networks for Data Compression and Associative Memories
13 Conclusions
Chapter VII- Competitive and Kohonen Networks
1. Introduction
2. Competition and Winner-Take-All Networks
3. Competitive Learning
4. Clustering
5. Improving Competitive Learning
6. Soft Competition
7. Kohonen Self-Organizing Map
8. Creating Classifiers from Competitive Networks
9. Adaptive Resonance Theory (ART)
10. Modular Networks
11 Conclusions
Chapter VIII - Principles of Digital Signal Processing
1. Time Series and Computers
2. Vectors and Discrete Signals
3. The Concept of Filtering
4. Time Domain Analysis of Linear Systems
5. Recurrent Systems and Stability
6. Frequency Domain Analysis
7. The Z-Transform and the System Transfer Function
8. The Frequency Response
9. Frequency Response and Poles and Zeros
10. Types of Linear Filters
11 Project: Design of Digital Filters
12 Conclusions
Chapter IX - Adaptive Filters
1. Introduction
2. The Adaptive Linear Combiner and Linear Regression
3. Optimum Filter Weights
4. Properties of the Adaptive Solution
5. Hebbian Networks for Time Processing
6. Applications of the Adaptive Linear Combiner
7. Applications of Temporal PCA Networks
8. Conclusions
Chapter X - Temporal Processing with Neural Networks
1. Static versus Dynamic Systems
2. Extracting Information in Time
3. The Focused Time Delay Neural Network (TDNN)
4. The Memory PE
5. The Memory Filter
6. Design of the Memory Space
7. The Gamma Memory PE
8. Time Lagged Feedforward Networks
9. Focused TLFNs Built from RBFs
10. Project: Iterative Prediction of Chaotic Time Series
11. Conclusions
Chapter XI - Training and Using Recurrent Networks
1. Introduction
2. Simple Recurrent Topolgies
3. Adapting the Feedback Parameter
4. Unfolding Recurrent Networks in Time
5. The Distributed TLFN Topology
6. Dynamic Systems
7. Recurrent Neural Networks
8. Learning Paradigms for Recurrent Systems
9. Applications of Dynamic Networks to System Identification and Control
10. Hopfield Networks
11. Grossberg's Additive Model
12. Beyond First Order Dynamics: Freeman's Model
13. Conclusions
Appendix A - Elements of Linear Algebra and Pattern Recognition
1. Introduction
2. Vectors: Concepts and Definitions
3. Matrices: Concepts and Definitions
4. Random Vectors
5. Conclusions
Appendix B - NeuroSolutions Tutorial
1. Introduction to NeuroSolutions
2. Introduction to Interactive Examples
3. The Fundamentals of NeuroSolutions
4. Using Probes in NeuroSolutions
5. Providing Input to your Networks
6. Training a Network
7. Summary
扫码或添加微信号:坛友素质互助
「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
您可能感兴趣的文章
本站推荐的文章
- 哲学名言 | 【独家发布】经典哲学名言
- 哲学书籍 | 求推荐一本讲人生目标的哲学书籍 ...
- 哲学书籍 | 20部必读的哲学书籍
- 哲学书籍 | 经济人,开拓你逻辑思维的哲学书 ...
- 哲学书籍 | 哲学书籍
- 哲学书籍 | 哲学书籍
- 哲学书籍 | 哲学书籍
- 哲学书籍 | 经典的哲学书籍
人气文章
本文标题:Neural and Adaptive Systems: Fundamentals Through Simulations
本文链接网址:https://bbs.pinggu.org/jg/huiji_huijiku_841546_1.html
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。