关于本站
人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!
经管之家新媒体交易平台
提供"微信号、微博、抖音、快手、头条、小红书、百家号、企鹅号、UC号、一点资讯"等虚拟账号交易,真正实现买卖双方的共赢。【请点击这里访问】
期刊
- 期刊库 | 马上cssci就要更新 ...
- 期刊库 | 【独家发布】《财 ...
- 期刊库 | 【独家发布】“我 ...
- 期刊库 | 【独家发布】“我 ...
- 期刊库 | 【独家发布】国家 ...
- 期刊库 | 请问Management S ...
- 期刊库 | 英文期刊库
- 核心期刊 | 歧路彷徨:核心期 ...
TOP热门关键词
扫码加入统计交流群 |
人工智能是指用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器的智能化,人工情感指用人工的方法和技术,模仿、延伸和扩展人的情感,使机器具有识别、理解和表达情感的能力。从广义的角度来看,情感是一种特殊的认知,意志又是一种特殊的情感,广义的人工智能包括人工智能、人工情感与人工意志三个方面,因此人工情感的发展历程实际上就是广义的人工智能的发展历程。
一、算术运算阶段
1614年苏格兰人John Napier发表了一篇论文 ,其中提到他发明了一种可以进行四则运算和方根运算的精巧装置;1623年Wilhelm Schickard制作了一个能进行6 位数以内加减法运算,并能通过铃声输出答案的“计算钟”,该装置通过转动齿轮来进行操作;1625年William Oughtred发明计算尺;1642年,法国哲学家兼数学家Blaise Pascal发明了第一台真正的机械计算器——滚轮式加法器,其外观上有6个轮子,分别代表着个、十、百、千、万、十万等,只需要顺时针拨动轮子,就可以进行加法,而逆时针则进行减法,原理和手表很像,算是计算机的开山鼻祖了;1668年英国人Samuel Morl制作了一个非十进制的加法装置,适宜计算钱币;1671年德国数学家Gottfried Leibniz 设计了一架可以进行乘法运算,最终答案长度可达16位的计算工具;1822年英国人Charles Babbage设计了差分机和分析机,其设计理论非常超前,类似于百年后的电子计算机,特别是利用卡片输入程序和数据的设计被后人所采用;1834年Babbage 设想制造一台通用分析机,能够完成所有的算术运算,该分析机由四个基本部件构成:存储库、运算室、传送机构和送人取出机构,类似于现代计算机的五大装置:输入、控制、运算、存储和输出装置,因此他被公认为计算机之父;1848年英国数学家George Boole创立二进制代数学,提前近一个世纪为现代二进制计算机的发展铺平了道路;1890年美国人口普查部门希望能得到一台机器帮助提高普查效率,Herman Hollerith (后来他的公司发展成了IBM 公司)借鉴Babbage的发明,用穿孔卡片存储数据,并设计了机器,结果仅用6 周就得出了准确的人口统计数据(如果用人工方法,大概要花10 年时间)。
算术运算主要是以机械方式来实施的。
二、数学运算阶段
在以机械方式运行的计算器诞生百年之后,随着电子技术的突飞猛进,计算机开始了真正意义上的由机械向电子时代的过渡,电磁学、电工学、电子学不断取得重大进展,在元件、器件方面接连发明了真空二极管和真空三极管,电子器件逐渐演变成为计算机的主体,而机械部件则渐渐处于从属位置。1906年美国人Lee De Forest发明电子管,为电子计算机的发展奠定了基础;1924年2月IBM公司成立,从此一个具有划时代意义的公司诞生;1935年IBM推出IBM601机,这是一台能在一秒钟内算出乘法的穿孔卡片计算机;1937年英国剑桥大学的Alan M.Turing出版了他的论文,并提出了被后人称之为“图灵机”的数学模型;1937 年Bell试验室的George Stibitz展示了用继电器表示二进制的装置,尽管仅仅是个展示品,但却是第一台二进制电子计算机;1940年Bell实验室的Samuel Williams 和Stibitz 制造成功了一个能进行复杂运算的计算机,该机器大量使用了继电器,并借鉴了一些电话技术,采用了先进的编码技术;1941年Atanasoff 和学生Berry 完成了能解线性代数方程的计算机,取名叫“ABC ”,用电容作存储器 ,用穿孔卡片作辅助存储器,那些孔实际上是“烧”上去的,时钟频率是60Hz,完成一次加法运算用时一秒;1946年美国宾夕法尼亚大学莫尔学院制成的大型电子数字积分计算机(ENIAC),最初也专门用于火炮弹道计算,后经多次改进而成为能进行各种科学计算的通用计算机,这台完全采用电子线路执行算术运算、逻辑运算和信息存储的计算机,运算速度比继电器计算机快1000倍,这就是人们常常提到的世界上第一台电子计算机;1945年数学家冯·诺伊曼发表了电子离散变量自动计算机(EDVAC) 方案;1949年英国剑桥大学数学实验室率先制成电子离散时序自动计算机(EDSAC);美国则于1950年制成了东部标准自动计算机(SFAC)等。
与此同时,数学、物理也相应地蓬勃发展,到了20世纪30年代,物理学的各个领域经历着定量化的阶段,描述各种物理过程的数学方程,其中有的用经典的分析方法已根难解决。于是数值分析受到了重视,研究出各种数值积分、数值微分以及微分方程数值解法,把计算过程归结为巨量的基本运算,从而奠定了现代计算机的数值算法基础。
此阶段的数学运算主要是以机电方式或电子管方式来实施的。
三、逻辑推理阶段
1950年图林发表了一篇划时代论文《计算机与智能》(后来改名为《机器能思维吗?》),引起了巨大的震动,他认为,与人脑的活动方式极为相似的机器是可以制造出来的。1956年美国达特莫斯大学(Dartmouth)召开了一次影响深远的历史性会议,参加这次聚会的青年学者的研究专业包括数学、心理学、神经生理学、信息论和电脑科学等,他们分别从不同的角度共同探讨人工智能的可能性,正是这次会议首次提出了“人工智能”(AI)这一术语,标志着人工智能作为一门新兴学科正式诞生。人工智能科学想要解决的问题,是让电脑也具有人类那种听、说、读、写、思考、学习、适应环境变化和解决各种实际问题的能力。
逻辑推理是人类思维的重要方面,包括归纳推理、演绎推理和模糊推理等多种形式。人工智能的核心内容就是要模拟这些推理形式,实现诸如故障诊断、数学定理证明、问题判断与求解、博弈等功能,因此逻辑推理是人工智能的核心内容之一。当机器有了逻辑推理能力以后,就能够比普通机器更加灵活地分析问题和处理问题,从而适用于更加复杂多变的应用场合。
1956年纽厄尔、赫伯特·西蒙 等人合作编制的《逻辑理论机》数学定理证明程序(简称LT),从而使机器迈出了逻辑推理的第一步。在卡内基—梅隆大学的计算机实验室,纽厄尔和西蒙通过大量的观察实例,发现人们求解数学题通常是用试凑的办法进行的,试凑时不一定列出了所有的可能性,而是用逻辑推理来迅速缩小搜索范围,人类证明数学定理也有类似的思维规律,通过“分解”(把一个复杂问题分解为几个简单的子问题)和“代入”(利用已知常量代入未知的变量)等方法,用已知的定理、公理或解题规则进行试探性推理,直到所有的子问题最终都变成已知的定理或公理,从而解决整个问题。人类求证数学定理也是一种启发式搜索,与电脑下棋的原理异曲同工,因此他们利用这个LT程序向数学定理发起了激动人心的冲击。电脑果然不孚众望,一举证明了数学家罗素的数学名著《数学原理》第二章中的38个定理。1963年,经过改进的LT程序在一部更大的电脑上,最终完成了第二章全部52条数学定理的证明。之后,洛克菲勒大学教授王浩用他首创的“王氏算法”,在一台速度不高的IBM704电脑上再次向《数学原理》发起挑战,不到9 分钟,就把这本数学史上视为里程碑的著作中全部(350条以上) 的定理统统证明了一遍,他因此被国际上公认为机器定理证明的开拓者之一。
此阶段的逻辑推理主要是以晶体管方式或集成电路方式来实施的。
四、专家系统阶段
费根鲍姆(E.Feigenbaum)在1977年第五届国际人工智能大会上提出了“知识工程”的概念,标志着AI研究从传统的以推理为中心,进入到以知识为中心的新阶段。他具体介绍了他们所开发的第一个“专家系统”,并指出,专家系统“是一个已被赋予知识和才能的计算机程序,从而使这种程序所起到的作用达到专家的水平”,这种“专家水平”意味着医学教授作出诊断和治疗的水平,高级工程师从事工程技术研究和开发的水平,特级教师在课堂上传授知识的水平。专家系统的客观目的就是要在机器智能与人类智慧集大成者──专家的知识经验之间建造一座桥梁,它是人类专家可以信赖的高水平智力助手。人类专家的知识通常包括书本知识和实践经验两大类,前者可能是专家在学校读书求学时所获,也可能是从杂志和书籍中自学而来,然而,仅仅掌握了书本知识的学者还不配称为专家,专家最为宝贵的知识是他凭借多年的实践积累的经验,这是他头脑中最具魅力的知识瑰宝。
费根鲍姆研制的第一个专家系统DENDRAL是化学领域的“专家”。在输入化学分子式和质谱图等信息后,它能通过分析推理决定有机化合物的分子结构,其分析能力已经接近、甚至超过了有关化学专家的水平。该专家系统为AI的发展树立了典范,其意义远远超出了系统本身在实用上创造的价值。在费根鲍姆发表演讲后,专家系统如同雨后春笋迅速遍及世界各地。此外,在极其广泛的领域,人工智能研究者构建了不计其数的“电脑专家”,如数学专家MACSYMA,农业专家PLANT,生物专家MOLGEN,地质探矿专家PROSPECTOR,教育专家GUIDON,法律专家LDS,军事专家ACES、ADEPT、ANALYST等系统。
人如果要灵活地分析问题和处理问题,并且适用于复杂多变的应用场合,就必须不断地吸收新知识和新信息,总结经验与教训,变更计划与步骤,这就需要不断地进行学习,在人工智能中,“学习”具有重要的意义。显然,专家系统已经开始具备了“学习”的功能,专家系统的“学习”过程就是知识的自动积累过程。在数学推理系统中,“学习”过程就是根据一些简单的概念推理形成较复杂的概念,并作出数学猜想等,根据一些简单的公理推理形成较复杂的公理,并作出理论假说等;在问题判断与求解中,“学习”过程就是根据执行情况修改计划。
此阶段的专家系统主要是以大规模集成电路方式来实施的。
五、模式识别阶段
模式识别是近30年来得到迅速发展的人工智能分支学科。但是,对于什么是“模式”,或者什么是机器(也包括人)能够辨认的模式,迄今尚无确切的定义。电脑模式识别技术最初起源于图象识别的需要,比如协助警方根据照片从茫茫人海里搜寻某个罪犯,或者帮助医生把显微镜下观察的细菌形态进行分类,确认它是球菌、杆菌还是弧菌。严格地说,模式识别又不是简单的分类学,它的目标包括对于识别对象的描述、理解与综合。
在1973年召开的模式识别第一次国际学术会议基础上,成立了国际模式识别协会(IAPP)。一位专家曾经指出:“模式识别是本世纪雄心最大的学科,需要电脑科学家、数学家、生物学家、心理学家、哲学家和社会学家的通力合作。”
如果不是电脑,而是人脑接受到视觉器官(如眼睛和视网膜)传递来的信息,它究竟是怎样识别和区分大千世界的万物呢?一种可能的解决方案是:图象上的每一点都用一个神经细胞与之对应并逐一判别,最后综合为整体,但是,既使只描述图象局部的大致轮廓,神经元的数目仍不敷使用;另一种可能的方案更符合实际:大脑感知的不是图象上所有的点,而是其轮廓中最典型的特征,如线段、角度、弧度、反差、颜色等等,把它们从图象中抽取出来,然后结合头脑中过去的记忆和有关经验和知识分析判断,即“特征抽取”,它是电脑图象识别的基础。
人类相互之间交流思想,除“读写”之外的重要途径是“听说”,电脑语音识别理所当然被列为与图象识别同等重要的人工智能技术,它包括用口令控制电脑的动作、或者根据口述声音录入文字、设计出“会听话”的电脑等内容。语音识别的基础技术也是模式识别,通常每个人说话的音色和音调都有一定的差异,发声频率各不相同,人脑对语音似乎有一种自适应的能力,既能区分不同性别不同年龄的语音差异,又能调整为能够理解的基本音素,从而听懂各色人等说出的话语。采用模板匹配方式的电脑不可能具备这种本领,它通常只能“听懂”特定某人的声音,而且是经过了一段时间“学习”的结果。学习过程称为“训练”,即对着电脑大声重复地讲述某些字词,直到它把这些字词的声音频谱特征“记住”,存放在参考样本库作为识别这个字词的模板。如果换了另一人说话,电脑就不能正确地识别,这就是对说话者的依赖性,也叫“认人”的识别系统。语音识别技术在近年获得了令人惊异的进展。现有的产品如IBM的ViaVoice已经可以对连续的语言进行比较可靠的识别;微软研究院的语音技术组希望增强PC产生和识别自然语言的能力,并支持所有类型的自然语言输入(包括文字输入和语音输入),并且可以将输入的语言进行结构化处理。
人工智能模式识别的进展,已经在一定程度上使电脑具备了“听”、“说”、“读”的能力,但距离理想的目标还有较长的路程。对于人类来说,哪怕你把字写得龙飞凤舞,哪怕你把话说得含糊不清,我们也能根据对上下文的理解做出正确的识别,它表明人脑模式识别的方法,不是或者不完全是什么“模板匹配”。对与模糊信息的识别处理,人脑比电脑要擅长得多。
此阶段的模式识别主要是以超大规模集成电路方式来实施的。
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
您可能感兴趣的文章
本站推荐的文章
人气文章
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。