[推荐]Richard Williams的online统计课程-经管之家官网!

人大经济论坛-经管之家 收藏本站
您当前的位置> 统计>>

统计库

>>

[推荐]Richard Williams的online统计课程

[推荐]Richard Williams的online统计课程

发布:lemononeplus | 分类:统计库

关于本站

人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!

CDA数据分析师证书

谁适合考CDA证书?年龄18-40周岁,专业是计算机、工商管理、统计学、管理科学类,学历本科及以上,行业是金融、信息技术、电信等,岗位是数据、产品、运营等。

谁适合考CDA证书?年龄18-40周岁,专业是计算机、工商管理、统计学、管理科学类,学历本科及以上,行业是金融、信息技术、电信等,岗位是数据、产品、运营等。

RichardWilliams,isanAssociateProfessoroftheDepartmentofSociologyattheUniversityofNotreDame,teachingMethodsandStatistics,Demography,andUrbanSociology.homepage:http://www.nd.edu/~rwilliam/有以下教程链 ...
免费学术公开课,扫码加入


Richard Williams,is an Associate Professor of the Department of Sociology at the University of Notre Dame, teaching Methods and Statistics, Demography, and Urban Sociology.

homepage:http://www.nd.edu/~rwilliam/

有以下教程链接(包括,pdf教程,spss和stata的例子)

Graduate Statistics I

入门级课程,介绍最基础的统计描述量,统计描述方法,假设检验,和OLS回归的基本知识

PART I: Descriptive statistics, probability, distributions, confidence intervals, intro to hypothesis testing.

PART II: Hypothesis testing.

PART III: Bivariate and multivariate regression

Graduate Statistics II

进阶教程,包括OLS回归问题和对策,如何选择合适的model,以及path analysis techniques

PART I:
In this section, we briefly review the basics of OLS regression. We talk about some of the most common issues (measurement error, missing data, violations of OLS assumptions) encountered in regression analysis.

基础OLS regression

有违OLS regression假设时的问题及对策:multicollinearity(多重共线性)问题、detecting及对策,missing data问题及对策,measurement error,简单的scale construction,outliers(极值)处理,Heteroskedasticity(异方差)问题、detecting及对策,基本的serial correlation(序列自相关)处理

PART II:
This section shows how regression can be used to properly specify a causal model. We begin by introducing "the logic of causal order," which lets us understand the different kinds of causal relationships that might be present between variables. Common model mis-specifications are then addressed (e.g. omitted variables, extraneous variables, variables with nonlinear effects). We discuss how to choose between alternative causal models. Finally, we introduce path analysis as a method for causal modeling.

因果逻辑关系分析

多因素统计分析:suppressor effects(制约效应???),interaction effects(交互作用);specification error;imposing and testing equality constraints in Models

组间比较方法和模型

path analysis(路径分析??)介绍

PART III:
Here, we develop path analysis techniques more fully. We talk about more complicated models that cannot be accurately estimated through conventional OLS regression techniques (e.g. nonrecursive models). We also talk about situations where the nature of the data make OLS regression inappropriate (e.g. dichotomous dependent variables) or less than optimal.

R square,计算及其问题详解

standardization的问题,和recursive model

更复杂的回归模型:Logistic regression;Logit model;Manova 和 LISREL的简介

Categorical Data Analysis

categorical data(分类数据?)分析方法和应用,解释有关非连续变量的统计方法

Overview.
This course discusses methods and models for the analysis of categorical dependent variables and their applications in social science research. Researchers are often interested in the determinants of categorical outcomes. For example, such outcomes might be binary (lives/dies), ordinal (very likely/ somewhat likely/ not likely), nominal (taking the bus, car, or train to work) or count (the number of times something has happened, such as the number of articles written). When dependent variables are categorical rather than continuous, conventional OLS regression techniques are not appropriate. This course therefore discusses the wide array of methods that are available for examining categorical outcomes.

Contents:

Overview of Generalized Linear Models, Maximum Likelihood Estimation

Brief Review of Models for Continuous Outcomes

Models for Binomial Outcomes

Models for Ordinal Outcomes

Models for Group Comparisons; Heterogeneous Choice Models

Categorical Data Analysis with Complicated Survey Designs

Models for Multinomial Outcomes

Models for Count Outcomes

「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
本文关键词:

本文论坛网址:https://bbs.pinggu.org/thread-335486-1-1.html

人气文章

1.凡人大经济论坛-经管之家转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
数据分析师 人大经济论坛 大学 专业 手机版