[推荐]Richard Williams的online统计课程
发布:lemononeplus | 分类:统计库
关于本站
人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!
CDA数据分析师证书
谁适合考CDA证书?年龄18-40周岁,专业是计算机、工商管理、统计学、管理科学类,学历本科及以上,行业是金融、信息技术、电信等,岗位是数据、产品、运营等。
哲学
- 哲学名言 | 【独家发布】经典 ...
- 哲学书籍 | 求推荐一本讲人生 ...
- 哲学书籍 | 经济人,开拓你逻 ...
- 哲学书籍 | 哲学书籍
- 哲学书籍 | 哲学书籍
- 哲学书籍 | 哲学书籍
- 哲学书籍 | 经典的哲学书籍
- 哲学书籍 | 发22本经典的经济 ...
论文
- 毕业论文 | 写毕业论文
- 毕业论文 | 为毕业论文找思路
- 毕业论文 | 可以有时间好好写 ...
- 毕业论文 | 毕业论文如何选较 ...
- 毕业论文 | 毕业论文选题通过 ...
- 毕业论文 | 还有三人的毕业论 ...
- 毕业论文 | 毕业论文答辩过程 ...
- 毕业论文 | 本科毕业论文,wi ...
TOP热门关键词
免费学术公开课,扫码加入 |
Richard Williams,is an Associate Professor of the Department of Sociology at the University of Notre Dame, teaching Methods and Statistics, Demography, and Urban Sociology.
homepage:http://www.nd.edu/~rwilliam/
有以下教程链接(包括,pdf教程,spss和stata的例子)
Graduate Statistics I
入门级课程,介绍最基础的统计描述量,统计描述方法,假设检验,和OLS回归的基本知识
PART I: Descriptive statistics, probability, distributions, confidence intervals, intro to hypothesis testing.
PART II: Hypothesis testing.
PART III: Bivariate and multivariate regression
Graduate Statistics II
进阶教程,包括OLS回归问题和对策,如何选择合适的model,以及path analysis techniques
PART I:
In this section, we briefly review the basics of OLS regression. We talk about some of the most common issues (measurement error, missing data, violations of OLS assumptions) encountered in regression analysis.
基础OLS regression
有违OLS regression假设时的问题及对策:multicollinearity(多重共线性)问题、detecting及对策,missing data问题及对策,measurement error,简单的scale construction,outliers(极值)处理,Heteroskedasticity(异方差)问题、detecting及对策,基本的serial correlation(序列自相关)处理
PART II:
This section shows how regression can be used to properly specify a causal model. We begin by introducing "the logic of causal order," which lets us understand the different kinds of causal relationships that might be present between variables. Common model mis-specifications are then addressed (e.g. omitted variables, extraneous variables, variables with nonlinear effects). We discuss how to choose between alternative causal models. Finally, we introduce path analysis as a method for causal modeling.
因果逻辑关系分析
多因素统计分析:suppressor effects(制约效应???),interaction effects(交互作用);specification error;imposing and testing equality constraints in Models
组间比较方法和模型
path analysis(路径分析??)介绍
PART III:
Here, we develop path analysis techniques more fully. We talk about more complicated models that cannot be accurately estimated through conventional OLS regression techniques (e.g. nonrecursive models). We also talk about situations where the nature of the data make OLS regression inappropriate (e.g. dichotomous dependent variables) or less than optimal.
R square,计算及其问题详解
standardization的问题,和recursive model
更复杂的回归模型:Logistic regression;Logit model;Manova 和 LISREL的简介
Categorical Data Analysis
categorical data(分类数据?)分析方法和应用,解释有关非连续变量的统计方法
Overview.
This course discusses methods and models for the analysis of categorical dependent variables and their applications in social science research. Researchers are often interested in the determinants of categorical outcomes. For example, such outcomes might be binary (lives/dies), ordinal (very likely/ somewhat likely/ not likely), nominal (taking the bus, car, or train to work) or count (the number of times something has happened, such as the number of articles written). When dependent variables are categorical rather than continuous, conventional OLS regression techniques are not appropriate. This course therefore discusses the wide array of methods that are available for examining categorical outcomes.
Contents:
Overview of Generalized Linear Models, Maximum Likelihood Estimation
Brief Review of Models for Continuous Outcomes
Models for Binomial Outcomes
Models for Ordinal Outcomes
Models for Group Comparisons; Heterogeneous Choice Models
Categorical Data Analysis with Complicated Survey Designs
Models for Multinomial Outcomes
Models for Count Outcomes
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
您可能感兴趣的文章
人气文章
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。