摘要翻译:
在这篇文章中,我们提出在规范高斯情形下,使用稀疏方法(如LASSO、Post-LASSO、sqrt-LASSO和Post-sqrt-LASSO)来形成第一阶段预测和估计具有许多仪器的线性仪器变量(IV)模型中的最优仪器。这些方法即使在仪器数量远大于样本量的情况下也适用。我们导出了所得到的IV估计的渐近分布,并给出了这些基于稀疏性的IV估计是渐近Oracle有效的条件。在仿真实验中,与最近提倡的多仪器鲁棒性方法相比,一种基于稀疏性的带有数据驱动惩罚的IV估计器表现良好。我们用Angrist和Krueger(1991)的学校教育数据在一个经验例子中说明了这一过程。
---
英文标题:
《LASSO Methods for Gaussian Instrumental Variables Models》
---
作者:
Alexandre Belloni and Victor Chernozhukov and Christian Hansen
---
最新提交年份:
2011
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
In this note, we propose to use sparse methods (e.g. LASSO, Post-LASSO, sqrt-LASSO, and Post-sqrt-LASSO) to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments in the canonical Gaussian case. The methods apply even when the number of instruments is much larger than the sample size. We derive asymptotic distributions for the resulting IV estimators and provide conditions under which these sparsity-based IV estimators are asymptotically oracle-efficient. In simulation experiments, a sparsity-based IV estimator with a data-driven penalty performs well compared to recently advocated many-instrument-robust procedures. We illustrate the procedure in an empirical example using the Angrist and Krueger (1991) schooling data.
---
PDF链接:
https://arxiv.org/pdf/1012.1297