摘要翻译:
在这篇文章中,我们提供了一种方法,以估计稀疏高维模型的方法为基础,在有许多仪器和控制的情况下估计因果/结构参数。我们使用这些高维方法来选择使用哪些仪器和哪些控制变量。我们采用的方法扩展了BCCH2012,该方法涵盖了具有少量对照的IV模型的工具选择,并扩展了BCH2014,该方法涵盖了在感兴趣的变量是基于可观察性的外生条件的模型中的对照选择,以适应大量对照和大量工具。我们用一个模拟和一个经验例子来说明这种方法。技术支持材料可在一个补充的在线附录中获得。
---
英文标题:
《Post-Selection and Post-Regularization Inference in Linear Models with
Many Controls and Instruments》
---
作者:
Victor Chernozhukov, Christian Hansen, Martin Spindler
---
最新提交年份:
2015
---
分类信息:
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
In this note, we offer an approach to estimating causal/structural parameters in the presence of many instruments and controls based on methods for estimating sparse high-dimensional models. We use these high-dimensional methods to select both which instruments and which control variables to use. The approach we take extends BCCH2012, which covers selection of instruments for IV models with a small number of controls, and extends BCH2014, which covers selection of controls in models where the variable of interest is exogenous conditional on observables, to accommodate both a large number of controls and a large number of instruments. We illustrate the approach with a simulation and an empirical example. Technical supporting material is available in a supplementary online appendix.
---
PDF链接:
https://arxiv.org/pdf/1501.03185