摘要翻译:
我们引入了一族依赖于无穷多参数序列的对称函数环。这种环的一个特异基是由Schur函数的类似物组成的。相应的结构系数是参数中的多项式,我们称之为Littlewood-Richardson多项式。通过修正B.Sagan和作者的一个较早的结果,我们给出了它们计算的一个组合规则。新规则为这些多项式提供了一个公式,在W.Graham的意义上,这个公式显然是正的。我们将此公式应用于Grassmannian上的等变Schubert类乘积的计算,它包含了结构系数的稳定性。A.Knutson和T.Tao利用拼图组合给出了这种展开式的第一个明显正的公式,但该公式的稳定性并不明显。在A.Okounkov和G.Olshanski构造的量子内积的基础上,利用Littlewood-Richardson多项式描述了一般线性李代数的Casimir元代数中的乘法规则。
---
英文标题:
《Littlewood-Richardson polynomials》
---
作者:
A. I. Molev
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
We introduce a family of rings of symmetric functions depending on an infinite sequence of parameters. A distinguished basis of such a ring is comprised by analogues of the Schur functions. The corresponding structure coefficients are polynomials in the parameters which we call the Littlewood-Richardson polynomials. We give a combinatorial rule for their calculation by modifying an earlier result of B. Sagan and the author. The new rule provides a formula for these polynomials which is manifestly positive in the sense of W. Graham. We apply this formula for the calculation of the product of equivariant Schubert classes on Grassmannians which implies a stability property of the structure coefficients. The first manifestly positive formula for such an expansion was given by A. Knutson and T. Tao by using combinatorics of puzzles while the stability property was not apparent from that formula. We also use the Littlewood-Richardson polynomials to describe the multiplication rule in the algebra of the Casimir elements for the general linear Lie algebra in the basis of the quantum immanants constructed by A. Okounkov and G. Olshanski.
---
PDF链接:
https://arxiv.org/pdf/0704.0065