摘要翻译:
设$H$和$H'$是光滑射影曲面$X$上的两个充足的线束,$M(H)$(resp.$M(H')$)是固定类型$(r,c_1,c_2)$的$H$-半可(resp.$H'$-半可)束的粗模格式。我们构造了一个爆破序列,它描述了$M(H)$与$M(H')$的区别,不仅当$R=2$时,而且当$R$是任意的时。我们在这里使用的方法是初等变换和带标志的束的概念。
---
英文标题:
《Blowing-ups describing the polarization change of moduli schemes of
semistable sheaves of general rank》
---
作者:
Kimiko Yamada
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $H$ and $H'$ be two ample line bundles over a smooth projective surface $X$, and $M(H)$ (resp. $M(H')$) the coarse moduli scheme of $H$-semistable (resp. $H'$-semistable) sheaves of fixed type $(r,c_1,c_2)$. We construct a sequence of blowing-ups which describes how $M(H)$ differs from $M(H')$ not only when $r=2$ but also when $r$ is arbitrary. Means we here utilize are elementary transforms and the notion of a sheaf with flag.
---
PDF链接:
https://arxiv.org/pdf/0704.2870