楼主: 能者818
186 0

[计算机科学] 两类和多类神经网络系统的鲁棒性比较 用于人脸识别 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

79%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
35.3298
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24952 点
帖子
4198
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
能者818 在职认证  发表于 2022-3-2 20:34:00 来自手机 |只看作者 |坛友微信交流群|倒序 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
人脸图像中的噪声、腐蚀和变异会严重影响人脸识别系统的性能。为了提高系统的鲁棒性,提出了能够从噪声数据中学习的多类神经网络分类器。然而,在大的人脸数据集上,这样的系统不能提供高水平的鲁棒性。在本文中,我们探索了一个成对神经网络系统作为一种可供选择的方法来提高人脸识别的鲁棒性。实验结果表明,该方法在对受噪声影响的人脸图像的预测精度方面优于多类神经网络系统。
---
英文标题:
《Comparing Robustness of Pairwise and Multiclass Neural-Network Systems
  for Face Recognition》
---
作者:
J. Uglov, V. Schetinin, C. Maple
---
最新提交年份:
2007
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  Noise, corruptions and variations in face images can seriously hurt the performance of face recognition systems. To make such systems robust, multiclass neuralnetwork classifiers capable of learning from noisy data have been suggested. However on large face data sets such systems cannot provide the robustness at a high level. In this paper we explore a pairwise neural-network system as an alternative approach to improving the robustness of face recognition. In our experiments this approach is shown to outperform the multiclass neural-network system in terms of the predictive accuracy on the face images corrupted by noise.
---
PDF链接:
https://arxiv.org/pdf/0704.3515
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 人脸识别 鲁棒性 神经网 Presentation 学习 实验 图像 性能 robustness

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 08:02