摘要翻译:
在本文中,我们研究了在面板数据环境中估计因果效应的方法,其中一些单元在一些时期暴露于一种处理,目标是估计处理过的单元/时期组合的反事实(未处理)结果。我们提出了一类矩阵完成估计器,它使用控制结果矩阵中与未处理的单元/周期相对应的观察元素来估算控制结果矩阵中与处理的单元/周期相对应的“缺失”元素。这导致一个矩阵很好地逼近原始(不完全)矩阵,但根据矩阵的核范数具有较低的复杂度。我们通过允许缺失数据的模式具有社会科学应用中常见的时间序列依赖结构来推广来自矩阵完成文献的结果。我们对矩阵完成文献、相互作用固定效应模型文献、无混淆下的程序评估和综合控制方法文献之间的联系提出了新的见解。我们证明了所有这些估计量都可以看作集中在同一个目标函数上。它们的不同之处在于它们处理识别的方式,在某些情况下,它们完全通过正规化(我们提议的核范数矩阵完成估计器),在其他情况下,它们主要通过施加硬性限制(不混杂性和综合控制方法)。在基于真实数据的仿真中,所提出的方法优于基于不混杂性的控制估计器或综合控制估计器。
---
英文标题:
《Matrix Completion Methods for Causal Panel Data Models》
---
作者:
Susan Athey, Mohsen Bayati, Nikolay Doudchenko, Guido Imbens,
Khashayar Khosravi
---
最新提交年份:
2021
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
In this paper we study methods for estimating causal effects in settings with panel data, where some units are exposed to a treatment during some periods and the goal is estimating counterfactual (untreated) outcomes for the treated unit/period combinations. We propose a class of matrix completion estimators that uses the observed elements of the matrix of control outcomes corresponding to untreated unit/periods to impute the "missing" elements of the control outcome matrix, corresponding to treated units/periods. This leads to a matrix that well-approximates the original (incomplete) matrix, but has lower complexity according to the nuclear norm for matrices. We generalize results from the matrix completion literature by allowing the patterns of missing data to have a time series dependency structure that is common in social science applications. We present novel insights concerning the connections between the matrix completion literature, the literature on interactive fixed effects models and the literatures on program evaluation under unconfoundedness and synthetic control methods. We show that all these estimators can be viewed as focusing on the same objective function. They differ solely in the way they deal with identification, in some cases solely through regularization (our proposed nuclear norm matrix completion estimator) and in other cases primarily through imposing hard restrictions (the unconfoundedness and synthetic control approaches). The proposed method outperforms unconfoundedness-based or synthetic control estimators in simulations based on real data.
---
PDF链接:
https://arxiv.org/pdf/1710.10251