摘要翻译:
本文提出了一种有源射频(RF)消除方案,以抑制同时发射和接收的无线电收发器中发射机(TX)的通带泄漏信号。该技术通过对已知传输数据进行自适应非线性滤波,在收发信机数字前端产生一个反相的TX泄漏信号的基带等效副本,以便于在非线性TX功率放大器(PA)下实现高精度的对消。然后,通过使用辅助发射机链来实现有源RF对消,以产生实际的RF对消信号,并将其与接收机(RX)低噪声放大器(LNA)输入端的接收信号相结合。本文还提出了一种基于解相关原理的闭环参数学习方法,以有效地估计具有记忆、有限无源隔离的非线性TX PA和非线性RX LNA的非线性对消滤波器系数。通过采用商用LTE-Advanced收发信机硬件组件的综合RF测量,对所提出的对消技术的性能进行了评估。结果表明,即使在较高的发射功率电平和较宽的传输带宽下,该技术也能对RX LNA输入端的TX通带泄漏信号提供高达54 dB的额外抑制。因此,这种新的对消方案可以大幅提高TX-RX隔离度,从而降低对无源隔离度和RF分量线性度的要求,并提高新兴5G无线网络中RF频谱使用的效率和灵活性。
---
英文标题:
《Adaptive Nonlinear RF Cancellation for Improved Isolation in
Simultaneous Transmit-Receive Systems》
---
作者:
Adnan Kiayani, Muhammad Zeeshan Waheed, Lauri Anttila, Mahmoud
Abdelaziz, Dani Korpi, Ville Syrj\"al\"a, Marko Kosunen, Kari Stadius, Jussi
Ryyn\"anen, and Mikko Valkama
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.
---
PDF链接:
https://arxiv.org/pdf/1709.06073