摘要翻译:
本文扩展了我们最近发展起来的动机认知动力学生命空间泡沫(LSF)模型。LSF利用自适应路径积分在光滑流形上生成Lewinian力场,以刻画个体目标定向动作的动力学。根据认知神经科学日益接受的解释性理论,这种动力学的一个关键特性是它的元稳定性和由此产生的相变,它能够将它与微观水平的皮质神经动力学联系起来。我们的扩展LSF模型引入了相变的概念,并用嵌入的几何混沌来补充它。为了描述这种LSF相变,使用了沿着相应的LSF拓扑变化的一般路径--积分。因此,我们的扩展LSF模型能够严格地表示公共LSF流形中两个或多个参与者的共同作用。当$n\geq3$时,由于$n$行为体之间的固有混沌耦合,该模型在双边和多边协同作用之间的几何性质上产生了实质性的定性差异。关键词:认知动力学,自适应路径积分,相变,混沌,拓扑变化,人类联合作用,函数逼近
---
英文标题:
《Phase Transitions, Chaos and Joint Action in the Life Space Foam》
---
作者:
Vladimir Ivancevic, Eugene Aidman, Leong Yen and Darryn Reid
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Neurons and Cognition 神经元与认知
分类描述:Synapse, cortex, neuronal dynamics, neural network, sensorimotor control, behavior, attention
突触,皮层,神经元动力学,神经网络,感觉运动控制,行为,注意
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
This paper extends our recently developed Life Space Foam (LSF) model of motivated cognitive dynamics \cite{IA}. LSF uses adaptive path integrals to generate Lewinian force--fields on smooth manifolds, in order to characterize the dynamics of individual goal--directed action. According to explanatory theories growing in acceptance in cognitive neuroscience, one of the key properties of this dynamics, capable of linking it to microscopic-level cortical neurodynamics, is its meta-stability and the resulting phase transitions. Our extended LSF model incorporates the notion of phase transitions and complements it with embedded geometrical chaos. To describe this LSF phase transition, a general path--integral is used, along the corresponding LSF topology change. As a result, our extended LSF model is able to rigorously represent co-action by two or more actors in the common LSF--manifold. The model yields substantial qualitative differences in geometrical properties between bilateral and multi-lateral co-action due to intrinsic chaotic coupling between $n$ actors when $n\geq 3$. Keywords: cognitive dynamics, adaptive path integrals, phase transitions, chaos, topology change, human joint action, function approximation
---
PDF链接:
https://arxiv.org/pdf/0806.0690