摘要翻译:
本文研究了当噪声由布朗运动和一个泊松随机测度相互独立时,具有两个反映右连续左限障碍(或障碍)的倒向随机微分方程。障碍过程的跳跃可以是可预测的,也可以是不可达的。当边界完全分离,生成元一致Lipschitz时,我们证明了解的存在唯一性。我们不假定障碍之间存在上鞅差。作为应用,我们证明了相关的混合零和微分-积分对策问题有一个值。
---
英文标题:
《BSDEs with two RCLL Reflecting Obstacles driven by a Brownian Motion and
Poisson Measure and related Mixed Zero-Sum Games》
---
作者:
S.Hamad\'ene and H.Wang
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
In this paper we study Backward Stochastic Differential Equations with two reflecting right continuous with left limits obstacles (or barriers) when the noise is given by Brownian motion and a Poisson random measure mutually independent. The jumps of the obstacle processes could be either predictable or inaccessible. We show existence and uniqueness of the solution when the barriers are completely separated and the generator uniformly Lipschitz. We do not assume the existence of a difference of supermartingales between the obstacles. As an application, we show that the related mixed zero-sum differential-integral game problem has a value.
---
PDF链接:
https://arxiv.org/pdf/0803.1815